Abstract
A new synthesis technique allows large fluid inclusions to be produced at conditions under which one normally would obtain only small inclusions, with the additional advantage that the timing of fluid entrapment can be controlled. In the first step, primary fluid inclusions are grown at P-T conditions under which it is relatively easy to produce large inclusions. In the second step, which can be performed either during the same experiment or during a separate experiment after a desired time of pre-equilibration, some of the primary inclusions produced during the first step are re-opened by in-situ fracturing, causing partial replacement of the inclusion content. The sample is then left at high pressure and temperature until the cracks leading to the re-opened inclusions are healed. To test the method and quantify the efficiency of fluid replacement in the re-opened inclusions, we produced primary inclusions at 700 °C/200 MPa and re-opened them during a second experiment in the presence of a compositionally different fluid at 500 °C/70 MPa. Laser-ablation ICP-MS (LA-ICP-MS) analyses of eight primary and 11 refilled inclusions demonstrate that in the latter more than 97% of the original fluid was replaced by new fluid. Thus, the refilled inclusions are representative of the surrounding fluid at the time of in situ fracturing.
© 2015 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Determination of high-pressure phase equilibria of Fe2O3 using the Kawai-type apparatus equipped with sintered diamond anvils
- Suhailite, a new ammonium trioctahedral mica
- First record of K-cymrite in North Qaidam UHP eclogite, Western China
- Stability of uranium (VI) peroxide hydrates under ionizing radiation
- Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability
- The behavior of Co and Ni in olivine in planetary basalts: An experimental investigation
- Partitioning of Ni between olivine and an iron-rich basalt: Experiments, partition models, and planetary implications
- The application of Lorentz transmission electron microscopy to the study of lamellar magnetism in hematite-ilmenite
- A Monte Carlo study of short- and long-range order of tetrahedral cations in sapphirine and khmaralite
- High-pressure ammonium-bearing silicates: Implications for nitrogen and hydrogen storage in the Earth’s mantle
- Formation of aragonite mesocrystals and implication for biomineralization
- U-Pb age, trace-element, and Hf-isotope compositions of zircon in a quartz vein from eclogite in the western Dabie Mountains: Constraints on fluid flow during early exhumation of ultrahigh-pressure rocks
- Interaction of phosphate-bearing solutions with gypsum: Epitaxy and induced twinning of brushite (CaHPO4·2H2O) on the gypsum cleavage surface
- Fukalite: An example of an OD structure with two-dimensional disorder
- Chemical control of 3T stacking order in a Li-poor biotite mica
- Site preference of U and Th in Cl, F, and Sr apatites
- High-pressure structural behavior of ingersonite, Ca3Mn2+Sb5+4O14: An in-situ single-crystal X-ray study
- Crystal chemistry of Fe32+Cr2Si3O12–Fe32+Fe23+Si3O12 garnet solid solutions and related spinels
- A method to synthesize large fluid inclusions in quartz at controlled times and under unfavorable growth conditions
- The stability of methane hydrate intercalates of montmorillonite and nontronite: Implications for carbon storage in ocean-floor environments
- Structure and carbonate orientation of vaterite (CaCO3)
- Qusongite (WC): A new mineral
- Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite
- Water speciation in hydrous silicate and aluminosilicate glasses: Direct evidence from 29Si-1H and 27Al-1H double-resonance NMR
- Acid production by FeSO4·nH2O dissolution and implications for terrestrial and martian aquatic systems
Articles in the same Issue
- Determination of high-pressure phase equilibria of Fe2O3 using the Kawai-type apparatus equipped with sintered diamond anvils
- Suhailite, a new ammonium trioctahedral mica
- First record of K-cymrite in North Qaidam UHP eclogite, Western China
- Stability of uranium (VI) peroxide hydrates under ionizing radiation
- Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability
- The behavior of Co and Ni in olivine in planetary basalts: An experimental investigation
- Partitioning of Ni between olivine and an iron-rich basalt: Experiments, partition models, and planetary implications
- The application of Lorentz transmission electron microscopy to the study of lamellar magnetism in hematite-ilmenite
- A Monte Carlo study of short- and long-range order of tetrahedral cations in sapphirine and khmaralite
- High-pressure ammonium-bearing silicates: Implications for nitrogen and hydrogen storage in the Earth’s mantle
- Formation of aragonite mesocrystals and implication for biomineralization
- U-Pb age, trace-element, and Hf-isotope compositions of zircon in a quartz vein from eclogite in the western Dabie Mountains: Constraints on fluid flow during early exhumation of ultrahigh-pressure rocks
- Interaction of phosphate-bearing solutions with gypsum: Epitaxy and induced twinning of brushite (CaHPO4·2H2O) on the gypsum cleavage surface
- Fukalite: An example of an OD structure with two-dimensional disorder
- Chemical control of 3T stacking order in a Li-poor biotite mica
- Site preference of U and Th in Cl, F, and Sr apatites
- High-pressure structural behavior of ingersonite, Ca3Mn2+Sb5+4O14: An in-situ single-crystal X-ray study
- Crystal chemistry of Fe32+Cr2Si3O12–Fe32+Fe23+Si3O12 garnet solid solutions and related spinels
- A method to synthesize large fluid inclusions in quartz at controlled times and under unfavorable growth conditions
- The stability of methane hydrate intercalates of montmorillonite and nontronite: Implications for carbon storage in ocean-floor environments
- Structure and carbonate orientation of vaterite (CaCO3)
- Qusongite (WC): A new mineral
- Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite
- Water speciation in hydrous silicate and aluminosilicate glasses: Direct evidence from 29Si-1H and 27Al-1H double-resonance NMR
- Acid production by FeSO4·nH2O dissolution and implications for terrestrial and martian aquatic systems