Home Physical Sciences The modular structure of dovyrenite, Ca6Zr[Si2O7]2(OH)4: Alternate stacking of tobermorite and rosenbuschite-like units
Article
Licensed
Unlicensed Requires Authentication

The modular structure of dovyrenite, Ca6Zr[Si2O7]2(OH)4: Alternate stacking of tobermorite and rosenbuschite-like units

  • Milen Kadiyski EMAIL logo , Thomas Armbruster , Evgeny V. Galuskin , Nikolay N. Pertsev , Aleksander E. Zadov , Irina O. Galuskina , Roman Wrzalik , Piotr Dzierzanowski and Evgeny V. Kislov
Published/Copyright: April 1, 2015
Become an author with De Gruyter Brill

Abstract

The average structure, space group Pnnm [subcell: A = 5.666(16), B = 18.844(5), C = 3.728(11) Å, V = 398.0(2) Å3, Z = 1], of the new mineral dovyrenite Ca6Zr[Si2O7]2(OH)4 has been refined from single-crystal X-ray data to R = 7.97%. The modular structure of dovyrenite is build by alternate stacking of Ca-polyhedral layers characteristic of the tobermorite structure and octahedral layers with attached disilicate groups known from the rosenbuschite group of minerals. No indications of ordered polytypes were detected for the potential OD-structure. Either the small crystal size producing only weak diffraction intensities did not allow detecting diffuse diffraction features (or “super-structure” reflections) or the structure is build by disordered stacks of OD layers. Nevertheless, the resolved average structure allowed unraveling the possible order patterns within the rosenbuschite-like octahedral layers. The key for understanding the polytypic character of this structure is the short periodicity of the tobermorite-like Ca polyhedral layer of only 3.73 Å along c, whereas the periodicity of the attached rosenbuschite-like octahedral layer is doubled. In dovyrenite Ca occurs in sixfold-, sevenfold-, and eightfold-coordination. The octahedral Ca site is only half occupied and may reveal additional vacancies, which must be charge balanced by disordered OH-groups replacing O. A corresponding modular structure with the same subunits but different composition and without octahedral vacancies exists for rinkite (Ti,Nb,Al,Zr)(Na,Ca)3(Ca,Ce)4[Si2O7]2(O,F)4, which has hitherto been considered as heterophyllosilicate.

Received: 2007-4-12
Accepted: 2007-10-8
Published Online: 2015-4-1
Published in Print: 2008-2-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Why is amazonitic K-feldspar an earmark of NYF-type granitic pegmatites? Clues from hybrid pegmatites in Madagascar
  2. Metamorphosed Ordovician Fe- and Mn-rich rocks in south-central Maine: From peri-Gondwanan deposition through Acadian metamorphism
  3. Boralsilite, Al16B6Si2O37, and “boron-mullite:” Compositional variations and associated phases in experiment and nature
  4. Prograde muscovite-rich pseudomorphs as indicators of conditions during metamorphism: An example from NW Maine
  5. Wagnerite in a cordierite-gedrite gneiss: Witness of long-term fluid-rock interaction in the continental crust (Ile d’Yeu, Armorican Massif, France)
  6. Mineral chemistry of Ti-rich biotite from pegmatite and metapelitic granulites of the Kerala Khondalite Belt (southeast India): Petrology and further insight into titanium substitutions
  7. Multiple titanium substitutions in biotites from high-grade metapelitic xenoliths (Euganean Hills, Italy): Complete crystal chemistry and appraisal of petrologic control
  8. Proto-polymorphs of jimthompsonite and chesterite in contact-metamorphosed serpentinites from Japan
  9. Silicate garnet: A micro to macroscopic (re)view
  10. Monazite occurrence, chemistry, and chronology in the granitoid rocks of the Lachlan Fold Belt, Australia: An electron microprobe study
  11. Single-crystal 40Ar/39Ar age variation in muscovite of the Gassetts Schist and associated gneiss, Vermont Appalachians
  12. Single-crystal X-ray studies of trioctahedral micas coexisting with dioctahedral micas in metamorphic sequences from western Maine
  13. Tourmaline chemistry and the IIIB site
  14. The octahedral sheet of metamorphic 2M1-phengites: A combined EMPA and AXANES study
  15. Crystal chemistry of phlogopite from Vulture-S. Michele Subsynthem volcanic rocks (Mt. Vulture, Italy) and volcanological implications
  16. Beneath the Stillwater Complex: Petrology and geochemistry of quartz-plagioclasecordierite (or garnet)-orthopyroxene-biotite ± spinel hornfels, Mountain View area, Montana
  17. Correlation between crystallization pressure and structural parameters of phengites
  18. The modular structure of dovyrenite, Ca6Zr[Si2O7]2(OH)4: Alternate stacking of tobermorite and rosenbuschite-like units
  19. Environmental parameters affect the physical properties of fast-growing magnetosomes
  20. In situ Raman spectroscopy measurements of MgAl2O4 spinel up to 1400 °C
  21. Vibrational properties of δ-AlOOH under pressure
  22. Mössbauer spectroscopic study of synthetic leucophosphite, KFe2(PO4)2(OH)·2H2O
  23. Rhönite in Luna 24 pyroxenes: First find from the Moon, and implications for volatiles in planetary magmas
  24. New high-pressure B2 phase of FeS above 180 GPa
  25. Magnesium K-edge EXAFS study of bond-length behavior in synthetic pyrope-grossular garnet solid solutions
Downloaded on 9.2.2026 from https://www.degruyterbrill.com/document/doi/10.2138/am.2008.2669/html
Scroll to top button