Home Ab initio study of structural, elastic and thermodynamic properties of Fe3S at high pressure: Implications for planetary cores
Article
Licensed
Unlicensed Requires Authentication

Ab initio study of structural, elastic and thermodynamic properties of Fe3S at high pressure: Implications for planetary cores

  • Karen Valencia , Aldemar De Moya , Guillaume Morard , Neil L. Allan and Carlos Pinilla ORCID logo
Published/Copyright: January 26, 2022
Become an author with De Gruyter Brill

Abstract

Using density functional theory electronic structure calculations, the equation of state, thermodynamic and elastic properties, and sound wave velocities of Fe3S at pressures up to 250 GPa have been determined. Fe3S is found to be ferromagnetic at ambient conditions but becomes non-magnetic at pressures above 50 GPa. This magnetic transition changes the c/a ratio leading to more isotropic compressibility, and discontinuities in elastic constants and isotropic sound velocities. Thermal expansion, heat capacity, and Grüneisen parameters are calculated at high pressures and elevated temperatures using the quasiharmonic approximation. We estimate Fe-Fe and Fe-S force constants, which vary with Fe environment, as well as the 56Fe/54Fe equilibrium reduced partition function in Fe3S and compare these results with recently reported experimental values. Finally, our calculations under the conditions of the Earth’s inner core allow us to estimate a S content of 2.7 wt% S, assuming the only components of the inner core are Fe and Fe3S, a linear variation of elastic properties between end-members Fe and Fe3S, and that Fe3S is kinetically stable. Possible consequences for the core-mantle boundary of Mars are also discussed.

Acknowledgments and Funding

This work was performed using Granado-HPC from the Universidad del Norte and SCARF from the STFC of the U.K. We acknowledge funding from COLCIENCIAS and ECOSNORD through research Grant No. 2015-710-51568 (Contract No. 023-2016) and Grant No. FP44842-143-2017, respectively.

References cited

Adams, M.M., Stone, D.R., Zimmerman, D.S., and Lathrop, D.P. (2015) Liquid sodium models of the Earth’s core. Progress in Earth and Planetary Science, 2, 29.10.1186/s40645-015-0058-1Search in Google Scholar

Alboussière, T., Deguen, R., and Melzani, M. (2010) Melting-induced stratification above the Earth’s inner core due to convective translation. Nature, 466, 744–747.10.1038/nature09257Search in Google Scholar

Alfè, D., Gillan, M., and Price, G. (2000) Constraints on the composition of the Earth’s core from ab initio calculations. Nature, 405, 172–175.10.1038/35012056Search in Google Scholar

Alfè, D., Gillan, M.J., and Price, G.D. (2002a) Composition and temperature of the Earth’s core constrained by combining ab initio calculations and seismic data. Earth and Planetary Science Letters, 195, 91–98.10.1016/S0012-821X(01)00568-4Search in Google Scholar

Alfè, D., Gillan, M.J., Vočadlo, L., Brodholt, J., Price, G.D., Trans, P., and Lond, R.S. (2002b) The ab initio simulation of the Earth’s core. Philosophical Transactions, Series A, Mathematical, Physical, and Engineering Sciences, 360, 1227–1244.10.1098/rsta.2002.0992Search in Google Scholar PubMed

Allan, N.L., Braithwaite, M., Cooper, D.L., Mackrodt, W.C., and Wright, S.C. (1991) Ionic solids at high pressure and elevated temperatures: MgO (Periclase). The Journal of Chemical Physics, 95, 6792 –6799.10.1063/1.461517Search in Google Scholar

Allan, N.L., Braithwaite, M., Cooper, D.L., Petch, B., and Mackrodt, W.C. (1993) Ionic halides and oxides at high pressure: Calculated hugoniots, isotherms and thermal pressures. Journal of the Chemical Society, Faraday Transactions, 89, 4369–4374.10.1039/ft9938904369Search in Google Scholar

Allan, N.L., Barron, T.H.K., and Bruno, J.A.O. (1996) The zero static internal stress approximation in lattice dynamics and the calculation of isotope effects on molar volumes. The Journal of Chemical Physics, 105, 8300–8303.10.1063/1.472684Search in Google Scholar

Antonangeli, D., Morard, G., Paolasini, L., Garbarino, G., Murphy, C.A., Edmund, E., Decremps, F., Fiquet, G., Bosak, A., Mezouar, M., and Fei, Y. (2018) Sound velocities and density measurements of solid hcp-Fe and hcp-Fe–Si (9 wt%) alloy at high pressure: Constraints on the Si abundance in the Earth’s inner core. Earth and Planetary Science Letters, 482, 446–453.10.1016/j.epsl.2017.11.043Search in Google Scholar

Aurnou, J.M. (2007) Planetary core dynamics and convective heat transfer scaling. Geophysical & Astrophysical Fluid Dynamics, 101, 327–345.10.1080/03091920701472568Search in Google Scholar

Badro, J., Fiquet, G., Guyot, F., Gregoryanz, E., Occelli, F., Antonangeli, D., and d’Astuto, M. (2007) Effect of light elements on the sound velocities in solid iron: Implications for the composition of Earth’s core. Earth and Planetary Science Letters, 254, 233–238.10.1016/j.epsl.2006.11.025Search in Google Scholar

Banerdt, W.B., Smrekar, S., Antonangeli, D., Asmar, S., Banfield, D., Beghein, C., Bowles, N., Bozdag, E., Chi, P., Christesen, U., and others (2019) Insight—The first three months on Mars. 50th Lunar and Planetary Science Conference 2019, Cont. 2132.Search in Google Scholar

Barron, T.H.K., and White, G.K. (1999) Heat Capacity and Thermal Expansion at Low Temperatures, 356 p. Kluwer.10.1007/978-1-4615-4695-5Search in Google Scholar

Belonoshko, A.B., Ahuja, R., and Johansson, B. (2000) Quasi—Ab initio molecular dynamic study of Fe melting. Physical Review Letters, 84, 3638–3641.10.1103/PhysRevLett.84.3638Search in Google Scholar PubMed

Belonoshko, A.B., Ahuja, R., and Johansson, B. (2003) Stability of the body-centered-cubic phase of iron in the Earth’s inner core. Nature, 424, 1032–1034.10.1038/nature01954Search in Google Scholar PubMed

Belonoshko, A.B., Skorodumova, N.V., Rosengren, A., and Johansson, B. (2008) Elastic anisotropy of Earth’s inner core. Science, 319, 797–800.10.1126/science.1150302Search in Google Scholar PubMed

Bourdon, B., Roskosz, M., and Hin, R.C. (2018) Isotope tracers of core formation. Earth-Science Reviews, 181, 61–81.10.1016/j.earscirev.2018.04.006Search in Google Scholar

Breuer, D., Rueckriemen, T., and Spohn, T. (2015) Iron snow, crystal floats, and inner-core growth: modes of core solidification and implications for dynamos and terrestrial planets and moons. Progress in Earth and Planetary Science, 2, 39.10.1186/s40645-015-0069-ySearch in Google Scholar

Carrier, P., Wentzcovitch, R., and Tsuchiya, J. (2007) First-principles prediction of crystal structures at high temperatures using the quasiharmonic approximation. Physical Review B, 76, 64116.10.1103/PhysRevB.76.064116Search in Google Scholar

Chen, B., Gao, L., Funakoshi, K-I., and Li, J. (2007) Thermal expansion of iron-rich alloys and implications for the Earth’s core. Proceedings of the National Academy of Sciences, 104, 9162–9167.10.1073/pnas.0610474104Search in Google Scholar PubMed PubMed Central

Cococcioni, M., and de Gironcoli, S. (2005) Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Physical Review B, 71, 035105.10.1103/PhysRevB.71.035105Search in Google Scholar

Craddock, P.R., and Dauphas, N. (2010) Iron isotopic composition of reference materials, geostandards and chondrites. Geostandards and Geoanalytical Research, 35, 101–123.10.1111/j.1751-908X.2010.00085.xSearch in Google Scholar

Dauphas, N., Roskosz, M., Alp, E.E., Golden, D.C., Sio, C.K., Tissot, F.L.H., Hu, M.Y., Zhao, J., Gao, L., and Morris, R.V. (2012) A general moment NRIXS approach to the determination of equilibrium Fe isotopic fractionation factors: Application to goethite and jarosite. Geochimica et Cosmochimica Acta, 94, 254–275.10.1016/j.gca.2012.06.013Search in Google Scholar

Devey, A.J., Grau-Crespo, R., and de Leeuw, N.H. (2009) Electronic and magnetic properties of Fe3S4: GGA+U investigation. Physical Review B, 79, 195126.10.1103/PhysRevB.79.195126Search in Google Scholar

Dreibus, G., and Palme, H. (1996) Cosmochemical constraints on the sulfur content in the Earth’s core. Geochimica et Cosmochimica Acta, 60, 1125–1130.10.1016/0016-7037(96)00028-2Search in Google Scholar

Dubiel, S.M. (2009) Relationship between the magnetic hyperfine field and the magnetic moment. Journal of Alloys and Compounds, 488, 18–22.10.1016/j.jallcom.2009.08.101Search in Google Scholar

Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., and Sutton, A.P. (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical Review B, 57, 1505–1509.10.1103/PhysRevB.57.1505Search in Google Scholar

Fei, Y., Li, J., Bertka, C.M., and Prewitt, C.T. (2000) Structure type and bulk modulus of Fe3S, a new iron-sulfur compound. American Mineralogist, 85, 1830–1833.10.2138/am-2000-11-1229Search in Google Scholar

Gavryushkin, P., Popov, Z.I., Litasov, K.D., Belonoshko, A.B., and Gavryushkin, A. (2016) Stability of B2-type FeS at Earth’s inner core pressures: Stability of B2-FeS at core pressures. Geophysical Research Letters, 43, 8435–8440.10.1002/2016GL069374Search in Google Scholar

Gu, T., Fei, Y., Wu, X., and Qin, S. (2014) High-pressure behavior of Fe3P and the role of phosphorus in planetary cores. Earth and Planetary Science Letters, 390, 296–303.10.1016/j.epsl.2014.01.019Search in Google Scholar

Gu, T., Fei, Y., Wu, X., and Qin, S. (2016) Phase stabilities and spin transitions of Fe3(S1–xPx) at high pressure and its implications in meteorites. American Mineralogist, 101, 205–210.10.2138/am-2016-5466Search in Google Scholar

Hin, R.C., Schmidt, M.W., and Bourdon, B. (2012) Experimental evidence for the absence of iron isotope fractionation between metal and silicate liquids at 1 GPa and 1250–1300 °C and its cosmochemical consequences. Geochimica et Cosmo-chimica Acta, 93, 164–181.10.1016/j.gca.2012.06.011Search in Google Scholar

Hirose, K., Labrosse, S., and Hernlund, J. (2013) Composition and state of the core. Annual Review of Earth and Planetary Sciences, 41, 657–691.10.1146/annurev-earth-050212-124007Search in Google Scholar

Huang, H., Wu, S., Hu, X., Wang, Q., Wang, X., and Fei, Y. (2013) Shock compression of Fe-FeS mixture up to 204 GPa. Geophysical Research Letters, 40, 687–691.10.1002/grl.50180Search in Google Scholar

Jaeken, J., and Cottenier, S. (2016) Solving the Christoffel equation: Phase and group velocities. Computer Physics Communications, 207, 445–451.10.1016/j.cpc.2016.06.014Search in Google Scholar

Kamada, S., Ohtani, E., Terasaki, H., Sakai, T., Miyahara, M., Ohishi, Y., and Hirao, N. (2012) Melting relationships in the Fe-Fe3S system up to the outer core conditions. Earth and Planetary Science Letters, 359-360, 26–33.10.1016/j.epsl.2012.09.038Search in Google Scholar

Kamada, S., Ohtani, E., Terasaki, H., Sakai, T., Takahashi, S., Hirao, N., and Ohishi, Y. (2014) Equation of state of Fe3S at room temperature up to 2 megabars. Physics of the Earth and Planetary Interiors, 228, 106–113.10.1016/j.pepi.2013.11.001Search in Google Scholar

Kresse, G., and Furthmüller, J. (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, Condensed Matter, 54, 11169–11186.10.1103/PhysRevB.54.11169Search in Google Scholar

Kresse, G., and Joubert, D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59, 1758–1775.10.1103/PhysRevB.59.1758Search in Google Scholar

Lai, X., Zhu, F., Liu, Y., Bi, W., Zhao, J., Alp, E.E., Hu, M.Y., Zhang, D., Tkachev, S., Manghnani, M.H., Prakapenka, V.B., and Chen, B. (2020) Elastic and magnetic properties of Fe3P up to core pressures: Phosphorus in the Earth’s core. Earth and Planetary Science Letters, 531, 115974.10.1016/j.epsl.2019.115974Search in Google Scholar

Li, J.Y., Fei, Y., Mao, H.K., Hirose, K., and Shieh, S.R. (2001) Sulfur in the Earth’s inner core. Earth and Planetary Science Letters, 193, 509–514.10.1016/S0012-821X(01)00521-0Search in Google Scholar

Lin, J.F., Fei, Y., Sturhahn, W., Zhao, J., Mao, H.K., and Hemley, R.J. (2004) Magnetic transition and sound velocities of Fe3S at high pressure: Implications for Earth and planetary cores. Earth and Planetary Science Letters, 226, 33–40.10.1016/j.epsl.2004.07.018Search in Google Scholar

Lincot, A., Merkel, S., and Cardin, P. (2015) Is inner core seismic anisotropy a marker for plastic flow of cubic iron? Geophysical Research Letters, 42, 1326–1333.10.1002/2014GL062862Search in Google Scholar

Litasov, K.D., and Shatskiy, A.F. (2016) Composition of the Earth’s core: A review. Russian Geology and Geophysics, 57, 22–46.10.1016/j.rgg.2016.01.003Search in Google Scholar

Liu, H.-P., James, P., Broddefalk, A., Andersson, Y., Granberg, P., and Eriksson, O. (1998) Structural and magnetic properties of (Fe1–xCox)P compounds: Experimental and theory. Journal of Magnetism and Magnetic Materials, 189, 69–82.10.1016/S0304-8853(98)00203-0Search in Google Scholar

Liu, H.-P., Andersson, Y., James, P., Satula, D., Kalska, B., Haggstrom, L., Eriksson, O., Broddefalk, A., and Nordblad, P. (2003) The antiferromagnetism of (Fe1–xMnx)P, x>0.67 compounds. Journal of Magnetism and Magnetic Materials, 256, 117–128.10.1016/S0304-8853(02)00414-6Search in Google Scholar

Liu, J., Dauphas, N., Roskosz, M., Hu, M.Y., Yang, H., Bi, W., Zhao, J., Alp, E.E., Hu, J.Y., and Lin, J-F. (2017) Iron isotopic fractionation between silicate mantle and metallic core at high pressure. Nature Publishing Group, 8, 1–6.10.1038/ncomms14377Search in Google Scholar PubMed PubMed Central

Mahan, B.M., Siebert, J., Pringle, E.A., and Moynier, F. (2017) Elemental partitioning and isotopic fractionation of Zn between metal and silicate and geochemical estimation of the S content of the Earth’s core. Geochimica et Cosmochimica Acta, 196, 252–270.10.1016/j.gca.2016.09.013Search in Google Scholar

Martin, P., Vočadlo, L., Alfè, D., and Price, G. (2004) An ab initio study of the relative stabilities and equations of state of Fe3S polymorphs. Mineralogical Magazine, 65, 181–191.10.1180/0026461046850221Search in Google Scholar

McDonough, W.F. (2003) Elastic and magnetic properties of Fe3P up to core pressures: Phosphorus in the Earth’s core. Elsevier, 531, 115974.Search in Google Scholar

Mookherjee, M. (2011) Elastic and anisotropy of Fe3C at high pressure. American Mineralogist, 96, 1530–1536.10.2138/am.2011.3917Search in Google Scholar

Morard, G., Andrault, D., Guignot, N., Sanloup, C., Mezouar, M., Petitgirard, S., and Fiquet, G. (2008) In situ determination of Fe–Fe3S phase diagram and liquid structural properties up to. Earth and Planetary Science Letters, 272, 620–626.10.1016/j.epsl.2008.05.028Search in Google Scholar

Morard, G., Siebert, J., Andrault, D., Guignot, N., Garbarino, G., Guyot, F., and Antonangeli, D. (2013) The Earth’s core composition from high pressure density measurements of liquid iron alloys. Earth and Planetary Science Letters, 373, 169–178.10.1016/j.epsl.2013.04.040Search in Google Scholar

Mori, Y., Ozawa, H., Hirose, K., Sinmyo, R., Shigehiko, T., Morard, G., and Ohishi, Y. (2017) Melting experiments on Fe–Fe3S system to 254 GPa. Earth and Planetary Science Letters, 464, 135–141.10.1016/j.epsl.2017.02.021Search in Google Scholar

Mouhat, F., and Coudert, F.-X. (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90, 224104.10.1103/PhysRevB.90.224104Search in Google Scholar

Ono, S., and Kikegawa, T. (2006) High-pressure study of FeS, between 20 and 120 GPa, using synchrotron X-ray powder diffraction. American Mineralogist, 91, 1941–1944.10.2138/am.2006.2347Search in Google Scholar

Ono, S., and Mibe, K. (2010) Magnetic transition of iron carbide at high pressures. Physics of the Earth and Planetary Interiors, 180, 1–6.10.1016/j.pepi.2010.03.008Search in Google Scholar

Otero-de-la-Rosa, A., Abassi-Perez, D., and Luana, V. (2011) First-principles prediction of crystal structures at high temperatures using the quasiharmonic approximation. Computer Physics Communications, 182, 2232.Search in Google Scholar

Ozawa, H., Hirose, K., Suzuki, T., Ohishi, Y., and Hirao, N. (2013) Decomposition of Fe3S above 250 GPa. Geophysical Research Letters, 40, 4845–4849.10.1002/grl.50946Search in Google Scholar

Perdew, J.P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 77, 3865–3868.10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed

Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., and Burke, K. (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Physical Review Letters, 100, 136406.10.1103/PhysRevLett.100.136406Search in Google Scholar PubMed

Pinilla, C., Blanchard, M., Balan, E., Natarajan, S.K., Vuilleumier, R., and Mauri, F. (2015) Equilibrium magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals: Insights from path integral molecular dynamics. Geochimica et Cosmochimica Acta, 163, 126–139.10.1016/j.gca.2015.04.008Search in Google Scholar

Pinilla, C., de Moya, A., Rabin, S., Morard, G., Roskosz, M., and Blanchard, M. (2021) First-principles investigation of equilibrium iron isotope fractionation in Fe1−xSx alloys at Earth’s core formation conditions. Earth and Planetary Science Letters, 569, 117059.10.7185/gold2021.5379Search in Google Scholar

Poitrasson, F., Halliday, A.N., Lee, D.-C., Levasseur, S., and Teutsch, N. (2004) Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms. Earth and Planetary Science Letters, 223, 253–266.10.1016/j.epsl.2004.04.032Search in Google Scholar

Poitrasson, F., Roskosz, M., and Corgne, A. (2009) iron isotope fractionation between molten alloys and silicate melt to 2000 °C and 7.7 GPa: Experimental evidence and implications for planetary differentiation and accretion. Earth and Planetary Science Letters, 278, 376–385.10.1016/j.epsl.2008.12.025Search in Google Scholar

Roberts, R.W., and Ruppin, R. (1971) Volume dependence of the Gruneisen parameter of alkali halides. Physical Review B, 4, 2041–2046.10.1103/PhysRevB.4.2041Search in Google Scholar

Seagle, C.T., Campbell, A.J., Heinz, D.L., Shen, G., and Prakapenka, V.B. (2006) Thermal equation of state of Fe3S and implications for sulfur in Earth’s core. Journal of Geophysical Research, 111, B06209.10.1029/2005JB004091Search in Google Scholar

Shahar, A., Hillgren, V.J., Horan, M.F., Mesa-Garcia, J., Kaufman, L.A., and Mock, T.D. (2015) Sulfur-controlled iron isotope fractionation experiments of core formation in planetary bodies. Geochimica et Cosmochimica Acta, 150, 253–264.10.1016/j.gca.2014.08.011Search in Google Scholar

Shahar, A., Schauble, E.A., Caracas, R., Gleason, A.E., Reagan, M.M., Xiao, Y., Shu, J., and Mao, W. (2016) Pressure-dependent isotopic composition of iron alloys. Science, 352, 580–582.10.1126/science.aad9945Search in Google Scholar

Shen, G., Lin, J., Fei, Y., Mao, H., Hu, M., and Chow, P. (2003) Magnetic and structural transition in Fe3S at high pressures. American Geophysical Union Fall Meeting Abstracts, V31D-0961.Search in Google Scholar

Sherman, D.M. (1997) pressure and the composition of the Earth’s core: Constraints on S and Si vs. temperature. Earth and Planetary Science Letters, 153, 149–155.10.1016/S0012-821X(97)00168-4Search in Google Scholar

Sohl, F., Schubert, G., and Spohn, T. (2005) Geophysical constraints on the composition and structure of the Martian interior. Journal of Geophysical Research, 110, E12008.10.1029/2005JE002520Search in Google Scholar

Steenstra, E.S., and van Westrenen, W. (2018) A synthesis of geochemical constraints on the inventory of light elements in the core of Mars. Icarus, 315, 69–78.10.1016/j.icarus.2018.06.023Search in Google Scholar

Tateno, S., Ozawa, H., Hirose, K., Suzuki, T., I-Kawaguchi, S., and Hirao, N. (2019) Fe2S: The most Fe-rich iron sulfide at the Earth’s inner core pressure. Geophysical Research Letters, 46, 11944–11949.10.1029/2019GL085248Search in Google Scholar

Taylor, M.B., Barrera, G.D., Allan, N.L., and Barron, T.H.K. (1997) Free energy derivatives and structure optimization within quasiharmonic lattice dynamics. Physical Review B, 56, 14380–14390.10.1103/PhysRevB.56.14380Search in Google Scholar

Taylor, M.B., Barrera, G.D., Allan, N.L., Barron, T.H.K., and Mackrodt, W.C. (1998) SHELL—A code for lattice dynamics and structure optimization of ionic crystals. Computer Physics Communications, 109, 135–143.10.1016/S0010-4655(98)00018-6Search in Google Scholar

Thompson, S., Komabayashi, T., Breton, H., Suehiro, S., Glazyrin, K., Pakhomova, A., and Ohishi, Y. (2020) Compression experiments to 126 GPa and 2500 K and thermal equation of state of Fe3S: Implications for sulfur in the Earth’s core. Earth and Planetary Science Letters, 534, 116080.10.1016/j.epsl.2020.116080Search in Google Scholar

Tkalcic, H. (2015) Complex inner core of the Earth: The last frontier of global seismology. Reviews of Geophysics, 53, 59–94.10.1002/2014RG000469Search in Google Scholar

Togo, A., and Tanaka, I. (2015) First principles phonon calculations in material sciences. Scripta Materialia, 108, 1–5.10.1016/j.scriptamat.2015.07.021Search in Google Scholar

Vočadlo, L., Brodholt, J., Dobson, D.P., Knight, K.S., Marshall, W.G., Price, G.D., and Wood, I.G. (2002) The effect of ferromagnetism on the equation of state of Fe3C studied by first-principles calculations. Earth and Planetary Science Letters, 203, 567–575.10.1016/S0012-821X(02)00839-7Search in Google Scholar

Weyer, S., Anbar, A.D., Brey, G.P., Münker, C., Mezger, K., and Woodland, A.B. (2005) Iron isotope fractionation during planetary differentiation. Earth and Planetary Science Letters, 240, 251–264.10.1016/j.epsl.2005.09.023Search in Google Scholar

Wicht, J., and Sanchez, S. (2019) Advances in geodynamo modelling. Geophysical & Astrophysical Fluid Dynamics, 113, 2–50.10.1080/03091929.2019.1597074Search in Google Scholar

Wu, X., Mookherjee, M., Gu, T., and Qin, S. (2011) Elasticity and anisotropy of iron-nickel phosphides at high pressure. Geophysical Research Letters, 38, L20301.10.1029/2011GL049158Search in Google Scholar

Yoder, C.F., Konopliv, A.S., Yuan, D.N., Standish, D.M., and Folkner, W.M. (2003) Fluid core size of Mars from detection of the solar size. Science, 300, 299–303.10.1126/science.1079645Search in Google Scholar PubMed

Received: 2019-08-21
Accepted: 2021-02-10
Published Online: 2022-01-26
Published in Print: 2022-02-23

© 2022 Mineralogical Society of America

Articles in the same Issue

  1. Alumino-oxy-rossmanite from pegmatites in Variscan metamorphic rocks from Eibenstein an der Thaya, Lower Austria, Austria: A new tourmaline that represents the most Al-rich end-member composition
  2. Fluorine partitioning between quadrilateral clinopyroxenes and melt
  3. Multi-stage magma evolution recorded by apatite and zircon of adakite-like rocks: A case study from the Shatanjiao intrusion, Tongling region, Eastern China
  4. The physical and chemical evolution of magmatic fluids in near-solidus silicic magma reservoirs: Implications for the formation of pegmatites
  5. Texture, geochemistry, and geochronology of titanite and pyrite: Fingerprint of magmatic-hydrothermal fertile fluids in the Jiaodong Au province
  6. Polytypism in semi-disordered lizardite and amesite by low-dose HAADF-STEM
  7. Peralkalinity in peraluminous granitic pegmatites. I. Evidence from whewellite and hydrogen carbonate in fluid inclusions
  8. Peralkalinity in peraluminous granitic pegmatites. II. Evidence from experiments on carbonate formation in spodumene-bearing assemblages
  9. Ab initio study of structural, elastic and thermodynamic properties of Fe3S at high pressure: Implications for planetary cores
  10. Removal of barite from zircon using an aqueous solution of diethylenetriaminepentaacetic acid and potassium carbonate
  11. Improving grain size analysis using computer vision techniques and implications for grain growth kinetics
  12. Crystal chemistry of arsenian pyrites: A Raman spectroscopic study
  13. Formation of the Maoniuping giant REE deposit: Constraints from mineralogy and in situ bastnäsite U-Pb geochronology
  14. Amphibole as a witness of chromitite formation and fluid metasomatism in ophiolites
  15. Ferro-papikeite, ideally NaFe2 2+(Fe32+Al2)(Si5Al3)O22(OH)2, a new orthorhombic amphibole from Nordmark (Western Bergslagen), Sweden: Description and crystal structure
  16. Letter
  17. HP-PdF2-type FeCl2 as a potential Cl-carrier in the deep Earth
  18. New Mineral Names: Alteration Products
  19. American Mineralogist thanks the 2021 reviewers
Downloaded on 7.10.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2021-7268/html
Scroll to top button