Home Physical Sciences model for calculating the viscosity of natural iron-bearing silicate melts over a wide range of temperatures, pressures, oxygen fugacites, and compositions
Article
Licensed
Unlicensed Requires Authentication

model for calculating the viscosity of natural iron-bearing silicate melts over a wide range of temperatures, pressures, oxygen fugacites, and compositions

  • Xianzhe Duan
Published/Copyright: November 12, 2014
Become an author with De Gruyter Brill

Abstract

A new general model that takes into account the pressure and redox state effect is presented to calculate melt viscosities of natural Fe-bearing melts. This new model is applicable to melts that span a wide range of temperatures (from 733 to 1873 K), pressures (0.001-15 kbar), H2O content (from 0 to 12.3 wt%), and compositions (from ultramafic, mafic to silicic melts). The accuracy of the model is calculated to be ±0.23 log units of viscosity, which is within or close to experimental uncertainty. The transport properties, including glass transition temperature and melt fragility, can also be calculated from this model. A spreadsheet to calculate the viscosity is provided in an Electronic Supplement.

Received: 2013-12-11
Accepted: 2014-6-4
Published Online: 2014-11-12
Published in Print: 2014-11-1

© 2014 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Highlights and Breakthroughs Merrillite and apatite as recorders of planetary magmatic processes
  2. Highlights and Breakthroughs Comparing clays from Mars and Earth: Implications for martian habitability
  3. Data-driven abductive discovery in mineralogy
  4. Thermal expansion of fluorapatite-hydroxylapatite crystalline solutions
  5. Synthesis and structure of carbonated barium and lead fluorapatites: Effect of cation size on A-type carbonate substitution
  6. Optical absorption spectroscopy study of the causes for color variations in natural Fe-bearing gahnite: Insights from iron valency and site distribution data
  7. Si-magnetite nano-precipitates in silician magnetite from banded iron formation: Z-contrast imaging and ab initio study
  8. Ordering kinetics in synthetic Mg(Al,Fe3+)2O4 spinels: Quantitative elucidation of the whole Al-Mg-Fe partitioning, rate constants, activation energies
  9. Experimental study of phlogopite reaction rim formation on olivine in phonolite melts: Kinetics, reaction rates, and residence times
  10. Etch-pit size, dissolution rate, and time in the experimental dissolution of olivine: Implications for estimating olivine lifetime at the surface of Mars
  11. Ferrian saponite from the Santa Monica Mountains (California, U.S.A., Earth): Characterization as an analog for clay minerals on Mars with application to Yellowknife Bay in Gale Crater
  12. A large spectral survey of small lunar craters: Implications for the composition of the lunar mantle
  13. In-situ characterization of oxalic acid breakdown at elevated P and T: Implications for organic C-O-H fluid sources in petrologic experiments
  14. Slawsonite-celsian-hyalophane assemblage from a picrite sill (Prague Basin, Czech Republic)
  15. Determining hematite content from NUV/Vis/NIR spectra: Limits of detection
  16. The role of water in generation of group II kimberlite magmas: Constraints from multiple saturation experiments
  17. Quantum mechanical modeling of hydrolysis and H2O-exchange in Mg-, Ca-, and Nisilicate clusters: Implications for dissolution mechanisms of olivine minerals
  18. Redox-driven exsolution of iron-titanium oxides in magnetite in Miller Range (MIL) 03346 nakhlite: Evidence for post crystallization oxidation in the nakhlite cumulate pile?
  19. Energetics of lanthanide-doped calcium phosphate apatite
  20. Thermal conductivity of molten and glassy NaAlSi3O8, CaMgSi2O6, and Mg2SiO4 by non-equilibrium molecular dynamics at elevated temperature and pressure
  21. Energetics of heterometal substitution in ε-Keggin [MO4Al12(OH)24(OH2)12]6/7/8+ ions
  22. Ab initio calculations of elastic constants of plagioclase feldspars
  23. Diagenetic formation of interlayer-deficient fluorophlogopite as a clay mineral in Early Cambrian phosphorite (Lesser Himalaya, India): The trioctahedral analog of illite
  24. Natural sepiolite: Enthalpies of dehydration, dehydroxylation, and formation derived from thermochemical studies
  25. A new interpretation of decomposition products of serpentine under shock compression
  26. model for calculating the viscosity of natural iron-bearing silicate melts over a wide range of temperatures, pressures, oxygen fugacites, and compositions
  27. The replacement of chalcopyrite by bornite under hydrothermal conditions
  28. Characterization of porosity in sulfide ore minerals: A USANS/SANS study
  29. Synthesis of a quenchable high-pressure form of magnetite (h-Fe3O4) with composition Fel(Fe2+0.75Mg0.26)Fe2(Fe3+ 0.70Cr0.15Al0.11Si0.04)2O4
  30. High-pressure elasticity of sodium majorite garnet, Na2MgSi5O12
  31. Armstrongite from Khan Bogdo (Mongolia): Crystal structure determination and implications for zeolite-like cation exchange properties
  32. Steinhardtite, a new body-centered-cubic allotropic form of aluminum from the Khatyrka CV3 carbonaceous chondrite
  33. New Mineral Names
  34. Book Review
Downloaded on 8.1.2026 from https://www.degruyterbrill.com/document/doi/10.2138/am-2014-4841/html
Scroll to top button