Home Shirozulite, KMn32+(Si3Al)O10(OH)2, a new manganese-dominant trioctahedral mica: Description and crystal structure
Article
Licensed
Unlicensed Requires Authentication

Shirozulite, KMn32+(Si3Al)O10(OH)2, a new manganese-dominant trioctahedral mica: Description and crystal structure

  • Kiyotaka Ishida EMAIL logo , Frank C. Hawthorne and Fumitoshi Hirowatari
Published/Copyright: March 28, 2015
Become an author with De Gruyter Brill

Abstract

Shirozulite is a new Mn-dominant trioctahedral mica from the Taguchi mine, Aichi Prefecture, Japan. The mineral occurs in tephroite-rhodochrosite ores in contact with a Ba-bearing, K-feldspar vein. Shirozulite formed during regional low-P/T metamorphism and, thereafter, suffered thermal metamorphism from a local granodiorite. Grains of shirozulite are up to 0.5 mm across and have a typical micaceous habit. Color: dark reddish brown. Cleavage: (001), perfect. Optical properties: biaxial negative, 2Vx = very small. Strongly pleochroic: X = pale yellow, Y = Z = pale brown, absorption X < Y ≈ Z. Refractive indices: nα = 1.592(2), nβ ≈ nγ = 1.635(2). The structural formula is (K0.90Ba0.09) (Mn2+ 1.53Mg0.94Fe2+0.20Ti0.04Al0.29) (Si2.54 Al1.46) O10 [(OH)1.97F0.03], and the end-member composition is KMn2+3AlSi3O10(OH)2. Density: obs. = 3.20(3) g/cm3 by pycnometer, calc. = 3.14(2) g/cm3. Shirozulite is monoclinic, C2/m, 1M polytype, a = 5.3791(7), b = 9.319(1), c = 10.2918(9) Å, β = 100.186(9)°, V = 507.8(1) Å3. The six strongest lines in the powder X-ray diffraction pattern are as follows: d (Å), l (%), (hkl): 10.16, 100, (001); 2.654, 96, (1̅31); 3.386, 51, (003); 1.556, 48, (3̅̅13); 2.467, 46, (1̅32); 2.202, 36, (1̅33). The crystal structure has been refined to an R value of 4.1% based on 663 observed reflections collected with MoKα X-radiation from a single crystal. The mean bond lengths, tetrahedral rotation, and octahedral flattening angles are as follows: <T-O> = 1.668, <M1-O> = 2.118, <M2-O> = 2.103, <K-O>(inner) = 2.995, and <K-O>(outer) = 3.376 Å, α = 8.36°, ψM1 = 58.5°, ψM2 = 58.2°. The apparent element distribution coefficient analyses among coexisting manganese or manganoan silicate minerals indicate that the trioctahedral mica structure cannot contain larger amounts of Mn2+ relative to Mg and Fe2+ than in olivine, pyroxenoid, and garnet.

Received: 2002-6-5
Accepted: 2003-9-19
Published Online: 2015-3-28
Published in Print: 2004-1-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Indialite in xenolithic rocks from Somma-Vesuvius volcano (Southern Italy): Crystal chemistry and petrogenetic features
  2. Coexisting chromian omphacite and diopside in tremolite schist from the Chugoku Mountains, SW Japan: The effect of Cr on the omphacite-diopside immiscibility gap
  3. 2111 biopyribole intermediate between pyroxene and amphibole: Artifact or natural product?
  4. Coexisting clinopyroxene/spinel and amphibole/spinel symplectites in metatroctolites from the Buck Creek ultramafic body, North Carolina Blue Ridge
  5. The T-X dependence of the isosymmetric displacive phase transition in synthetic Fe3+-Al zoisite: A temperature-dependent infrared spectroscopy study
  6. A kinetic study of the exsolution of pentlandite (Ni,Fe)9S8from the monosulfide solid solution (Fe,Ni)S
  7. Single-crystal plagioclase feldspar dissolution rates measured by vertical scanning interferometry
  8. A simple empirical method for high-quality electron microprobe analysis of fluorine at trace levels in Fe-bearing minerals and glasses
  9. Constraints on mingling of crystal populations from off-center zoning profiles: A statistical approach
  10. Pyribole evolution during tremolite synthesis from oxides
  11. Solution calorimetric determination of the enthalpies of formation of NH4-bearing minerals buddingtonite and tobelite
  12. Dehydration dynamics of bikitaite: Part I. In situ synchrotron powder X-ray diffraction study
  13. Dehydration dynamics of bikitaite: Part II. Ab initio molecular dynamics study
  14. Phosphate mineral associations in the Cañada pegmatite (Salamanca, Spain): Paragenetic relationships, chemical compositions, and implications for pegmatite evolution
  15. An improved equation for crystal size distribution in second-phase influenced aggregates
  16. Vibrational spectroscopy of pyrope-majorite garnets: Structural implications
  17. The modulated crystal structure of antigorite: The m = 17 polysome
  18. Structural variations in mercurian tetrahedrite
  19. A computational investigation of the Al/Fe/Mg order-disorder behavior in the dioctahedral sheet of phyllosilicates
  20. Investigation of Al/Si ordering in tetrahedral phyllosilicate sheets by Monte Carlo simulation
  21. Equations of state of ZrSiO4phases in the upper mantle
  22. High pressure behavior, transformation and crystal structure of synthetic iron-free pigeonite
  23. In situ determination of the compressibility of synthetic pure zircon (ZrSiO4) and the onset of the zircon-reidite phase transition
  24. Halite-sylvite thermoelasticity
  25. Spiral growth of grossular under hydrothermal conditions
  26. Incomplete retention of radiation damage in zircon from Sri Lanka
  27. Shirozulite, KMn32+(Si3Al)O10(OH)2, a new manganese-dominant trioctahedral mica: Description and crystal structure
  28. Novel phase transition in orthoenstatite
  29. In situ observation of the thermal decomposition of weddelite by heating stage environmental scanning electron microscopy
Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2004-0127/html
Scroll to top button