Home The high-temperature behavior of defect hydrogen species in quartz: Implications for hydrogen isotope studies
Article
Licensed
Unlicensed Requires Authentication

The high-temperature behavior of defect hydrogen species in quartz: Implications for hydrogen isotope studies

  • Kevin Grant EMAIL logo , Sarah A. Gleeson and Steve Roberts
Published/Copyright: March 31, 2015
Become an author with De Gruyter Brill

Abstract

A micro-infrared spectroscopic study of hydrothermal vein quartz known to have anomalous δD signatures has identified two hydrogen reservoirs. In samples that generate an isotopic signature in accordance with that anticipated under the accepted model of quartz crystallization, submicroscopic aggregates of liquid water are the dominant hydrous species. Samples which generate an anomalous δD signature contain, in addition to liquid water, structurally incorporated hydrous species associated with impurity cations.

Infrared spectra obtained during in situ stepped heating experiments, coupled with infrared analysis at 25 ℃, demonstrate that hydrogen liberated between 300 and 500 ℃ is chiefly molecular, liquid water. Hydrogen liberated at temperatures greater than 500 ℃ is dominantly that associated with specific structurally incorporated cation defects. Since both defect hydrogen and molecular water are contemporaneously incorporated from the precipitating medium during crystallization, we propose that irregular δD signatures, released following decrepitation at temperatures greater than 500 ℃, are due to isotopically fractionated hydrogen released from interstitial OH defect sites in the quartz structure.

δD signatures obtained from stoichiometrically anhydrous minerals are generally interpreted under the assumption that the hydrogen measured comes uniquely from decrepitated fluid inclusions. Instead, we suggest that δD ratios obtained from hydrothermal quartz reflect a sum of the contributions made by individual hydrogen reservoirs, each with a potentially distinctive δD signature. Thus, if the overall δD signature is attributed entirely to fluid inclusion phases, the nature of the precipitating fluid may be misinterpreted. Hydrogen extracted as molecular water at between 300 and 500 ℃ provides a true reflection of the hydrothermal solution associated with crystal precipitation.

Received: 2001-5-15
Accepted: 2002-11-11
Published Online: 2015-3-31
Published in Print: 2003-2-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Structure, metal-insulator transitions, and magnetic properties of FeO at high pressures
  2. The high-temperature behavior of defect hydrogen species in quartz: Implications for hydrogen isotope studies
  3. Thermal stability and vibrational spectra of the sheet borate tuzlaite, NaCa[B5O8(OH)2]·3H2O
  4. Hydrogen-bonded water in laumontite I: X-ray powder diffraction study of water site occupancy and structural changes in laumontite during room-temperature isothermal hydration/dehydration
  5. In-situ determination of mineral solubilities in fluids using a hydrothermal diamond-anvil cell and SR-XRF: Solubility of AgCl in water
  6. Pressure-induced phase transition in malayaite, CaSnOSiO4
  7. Equation of state of stishovite to lower mantle pressures
  8. Chemical transfer during redox exchanges between H2 and Fe-bearing silicate melts
  9. Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma. Part I: Systematics of trace-element partitioning
  10. Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma. Part II: Empirical equations for calculating trace-element partition coefficients of large-ion lithophile, high field-strength, and rare-earth elements
  11. Four generations of accessory-phase growth in low-pressure migmatites from SW New Hampshire
  12. Mineralogy, chemistry, and formation of oxidized biotite in the weathering profile of granitic rocks
  13. Experimental study of zircon coarsening in quartzite ±H2O at 1.0 GPa and 1000 ℃, with implications for geochronological studies of high-grade metamorphism
  14. Biotite dissolution processes and mechanisms in the laboratory and in nature: Early stage weathering environment and vermiculitization
  15. Fe2+ -Mg partitioning between garnet, magnesiowüstite, and (Mg,Fe)2SiO4 phases of the transition zone
  16. Interlayer structure and dynamics of Cl-bearing hydrotalcite: far infrared spectroscopy and molecular dynamics modeling
  17. Si-Al disorder and solid solutions in analcime, chabazite, and wairakite
  18. Cafetite, Ca[Ti2O5](H2O): Crystal structure and revision of chemical formula
  19. Order-disorder approach to calcioaravaipaite, [PbCa2Al(F,OH)9]: The crystal structure of the triclinic MDO polytype
  20. Ab initio investigation of the structures of NaOH hydrates and their Na+ and OH coordination polyhedra
  21. Another step toward understanding the true nature of sartorite: Determination and refinement of a ninefold superstructure
  22. Letter. Ultrapotassic clinopyroxene from the Kumdy-Kol microdiamond mine, Kokchetav Complex, Kazakhstan: Occurrence, composition and crystal-chemical characterization
  23. Letter. Determination of planetary basalt parentage: A simple technique using the electron microprobe
Downloaded on 7.11.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2003-2-302/html?lang=en
Scroll to top button