Home Physical Sciences An X-ray Rietveld, infrared, and Mössbauer spectral study of the NaMn(Fe1–xInx)2(PO4)3 alluaudite-type solid solution
Article
Licensed
Unlicensed Requires Authentication

An X-ray Rietveld, infrared, and Mössbauer spectral study of the NaMn(Fe1–xInx)2(PO4)3 alluaudite-type solid solution

  • Frédéric Hatert EMAIL logo , Raphaël P. Hermann , Gary J. Long , André-Mathieu Fransolet and Fernande Grandjean
Published/Copyright: March 31, 2015
Become an author with De Gruyter Brill

Abstract

Several compounds of the NaMn(Fe1-xInx)2(PO4)3 solid solution were synthesized by solid state reaction in air; pure alluaudite-like compounds were obtained for x = 0.00 to 1.00. X-ray Rietveld refinements indicate the presence of Na+ at the A1 and A2’ sites, Mn2+ at the M1 site, and Fe2+, Fe3+, and In3+ at the M2 site. The presence of small amounts of In3+ at the M1 site, and Mn2+ at the M2 site, indicates a partially disordered distribution between these cations. A good correlation was also established between the M1-M2 bond distance and the β angle of the alluaudite-like compounds. The disordered distribution of Fe2+, Fe3+, and In3+ at the M2 site is confirmed by the broadness of the infrared absorption bands. The Mossbauer spectra, measured between 90 and 295 K, were analyzed in terms of a model that takes into account the next-nearest neighbor inter­actions around the M2 crystallographic site. In all cases these spectra reveal the unexpected pres­ence of small amounts of Fe2+ at the M2 site, an amount that decreases as the In3+ content increases. The Fe2+ and Fe3+ isomer shifts are typical of the alluaudite structure and vary with temperature, as expected from a second-order Doppler shift. The derived iron vibrating masses and Mossbauer lattice temperatures are within the expected range of values for iron cations in an octahedral environment. The Fe2+ and Fe3+ quadrupole splittings are also typical of the alluaudite structure and the temperature dependence of the Fe2+ quadrupole splitting was fit with the model of Ingalls (1964), which yielded a ground state orbital splitting of ca. 380 to 570 cm-1 for the Fe2+ sites.

Received: 2002-1-15
Accepted: 2002-7-24
Published Online: 2015-3-31
Published in Print: 2003-1-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. A molecular dynamics study of the behavior of sodium in low albite
  2. Observation and interpretation of paramagnetic defects in Brazilian and Central African carbonados
  3. Dissolution of gibbsite: Direct observations using fluid cell atomic force microscopy
  4. Polytypes and higher-order structures of antigorite: A TEM study
  5. An infrared spectroscopic study of the basic copper phosphate minerals: Cornetite, libethenite, and pseudomalachite
  6. Influence of F content on the composition of Al-rich synthetic phlogopite: Part I. New information on structure and phase-formation from 29Si, 1H, and 19F MAS NMR spectroscopies
  7. NMR evidence for formation of octahedral and tetrahedral Al and repolymerization of the Si network during dissolution of aluminosilicate glass and crystal
  8. Thermodynamic properties of hercynite (FeAl2O4) based on adiabatic calorimetry at low temperatures
  9. The formation of Sr silicates at low temperature and the solubility product of tobermorite-like Sr5Si6O16(OH)2 .5H2O
  10. Thermal equation of state of omphacite
  11. The effect of thermal decarbonation on stable isotope compositions of carbonates
  12. Synthetic MgAl2O4 (spinel) at high-pressure conditions (0.0001–30 GPa): A synchrotron X-ray powder diffraction study
  13. The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgO-Al2O3-SiO2-H2O (MASH): The effects of Al3+ substitution on high-pressure stability
  14. The fusion curve of albite revisited and the compressibility of NaAlSi3O8 liquid with pressure
  15. Correction of secondary X-ray fluorescence near grain boundaries in electron microprobe analysis: Application to thermobarometry of spinel lherzolites
  16. An overgrowth model to explain multiple, dispersed high-Mn regions in the cores of garnet porphyroblasts
  17. Synchrotron X-ray diffraction study of the structure and dehydration behavior of todorokite
  18. Retrograde mineral reactions in saline fluid inclusions: The transformation ferropyrosmalite ↔ clinopyroxene
  19. The effect of ionizing radiation on uranophane
  20. Hydration, expansion, structure, and dynamics of layered double hydroxides
  21. Relict edenite in a garnet lherzolite from the Chinese Su-Lu UHP metamorphic terrane: Implications for metamorphic history
  22. Norrishite, K(Mn23+Li)Si4O10(O)2, an oxymica associated with sugilite from the Wessels Mine, South Africa: Crystal chemistry and 40Ar-39Ar dating
  23. The amblygonite (LiAlPO4F)-montebrasite (LiAlPO4OH) solid solution: A combined powder and single-crystal neutron diffraction and solid-state 6Li MAS, CP MAS, and REDOR NMR study
  24. An X-ray Rietveld, infrared, and Mössbauer spectral study of the NaMn(Fe1–xInx)2(PO4)3 alluaudite-type solid solution
  25. Gatelite-(Ce), a new REE-bearing mineral from Trimouns, French Pyrenees: Crystal structure and polysomatic relationships with epidote and törnebohmite-(Ce)
  26. Hydroxyl in clinopyroxene from the deep subducted crust: Evidence for H2O transport into the mantle
  27. A model for the structure of the hydrated aluminum phosphate, kingite determined by ab initio powder diffraction methods
  28. The crystal structure of synthetic autunite, Ca[(UO2)(PO4)]2(H2O)11
Downloaded on 17.2.2026 from https://www.degruyterbrill.com/document/doi/10.2138/am-2003-0124/html
Scroll to top button