Abstract
The fractionation of B and its isotopes between aqueous fluid and silicate melt has been studied from 550 to 1100 °C and 100-500 MPa. Fluid-melt partition coefficients are <1 for basaltic melt and >1 for rhyolite melt. This shows that B is not always strongly extracted from melts into hydrous fluids. Boron isotopic fractionation is large compared with the carbon and oxygen stable isotopic systems (especially at high T) and is most simply explained by differences in coordination (trigonal vs. tetrahedral) among coexisting phases. Combined with earlier measurements on illite-water (300- 350 °C), B isotopic fractionation defines a temperature-dependent trend from 300 to 1100 °C. Because of the large magnitude and apparent low sensitivity to bulk composition, B isotopic fractionation can be readily applied to studies of diagenesis, hydrothermal alteration of planetary bodies, subduction- zone processing and arc magma generation, and magma chamber evolution.
© 2015 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Formation of secondary pyrite and carbonate minerals in the Lower Williams Lake tailings basin, Elliot Lake, Ontario, Canada
- Hydroxyl in MgSiO3 akimotoite: A polarized and high-pressure IR study
- High-pressure IR-spectra and the thermodynamic properties of chloritoid
- Infrared and Raman study of interlayer anions CO32–, NO3–, SO42– and ClO4– in Mg/Al-hydrotalcite
- Effect of Fe oxidation state on the IR spectra of Garfield nontronite
- High-pressure single-crystal X-ray diffraction study of katoite hydrogarnet: Evidence for a phase transition from Ia3d →I4̅3d symmetry at 5 GPa
- The high-temperature P21/c-C2/c phase transition in Fe-free pyroxene (Ca0.15Mg1.85Si2O6): Structural and thermodynamic behavior
- Thermodynamics and stability of pseudobrookite-type MgTi2O5 (karrooite)
- Molecular orbital calculations on aluminosilicate tricluster molecules: Implications for the structure of aluminosilicate glasses
- Surface structures, stabilities, and growth of magnesian calcites: A computational investigation from the perspective of dolomite formation
- Spinels and other oxides in Mn-rich rocks from the Hutter Mine, Pittsylvania County, Virginia, U.S.A.: Implications for miscibility and solvus relations among jacobsite, galaxite, and magnetite
- An occurrence of igneous orthorhombic amphibole, Eriksberg gabbro, southern Sweden
- Crystal chemistry of Cr3+-V3+-rich clinopyroxenes
- The crystal structures of cesanite and its synthetic analogue—A comparison
- Disordered distribution of Cu in the crystal structure of leightonite, K2Ca2Cu(SO4)4 · 2H2O
- Neustädtelite and cobaltneustädtelite, the Fe3+ - and Co2+ -analogues of medenbachite
- Ciprianiite and mottanaite-(Ce), two new minerals of the hellandite group from Latium (Italy)
- Re-definition, nomenclature and crystal-chemistry of the hellandite group
- The new mineral baumstarkite and a structural reinvestigation of aramayoite and miargyrite
- Letters. Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt
- Experimental evidence of three coexisting immiscible fluids in synthetic granitic pegmatite
- Quantifying surface areas of clays by atomic force microscopy
- A new high-pressure phase of FeSi
Articles in the same Issue
- Formation of secondary pyrite and carbonate minerals in the Lower Williams Lake tailings basin, Elliot Lake, Ontario, Canada
- Hydroxyl in MgSiO3 akimotoite: A polarized and high-pressure IR study
- High-pressure IR-spectra and the thermodynamic properties of chloritoid
- Infrared and Raman study of interlayer anions CO32–, NO3–, SO42– and ClO4– in Mg/Al-hydrotalcite
- Effect of Fe oxidation state on the IR spectra of Garfield nontronite
- High-pressure single-crystal X-ray diffraction study of katoite hydrogarnet: Evidence for a phase transition from Ia3d →I4̅3d symmetry at 5 GPa
- The high-temperature P21/c-C2/c phase transition in Fe-free pyroxene (Ca0.15Mg1.85Si2O6): Structural and thermodynamic behavior
- Thermodynamics and stability of pseudobrookite-type MgTi2O5 (karrooite)
- Molecular orbital calculations on aluminosilicate tricluster molecules: Implications for the structure of aluminosilicate glasses
- Surface structures, stabilities, and growth of magnesian calcites: A computational investigation from the perspective of dolomite formation
- Spinels and other oxides in Mn-rich rocks from the Hutter Mine, Pittsylvania County, Virginia, U.S.A.: Implications for miscibility and solvus relations among jacobsite, galaxite, and magnetite
- An occurrence of igneous orthorhombic amphibole, Eriksberg gabbro, southern Sweden
- Crystal chemistry of Cr3+-V3+-rich clinopyroxenes
- The crystal structures of cesanite and its synthetic analogue—A comparison
- Disordered distribution of Cu in the crystal structure of leightonite, K2Ca2Cu(SO4)4 · 2H2O
- Neustädtelite and cobaltneustädtelite, the Fe3+ - and Co2+ -analogues of medenbachite
- Ciprianiite and mottanaite-(Ce), two new minerals of the hellandite group from Latium (Italy)
- Re-definition, nomenclature and crystal-chemistry of the hellandite group
- The new mineral baumstarkite and a structural reinvestigation of aramayoite and miargyrite
- Letters. Isotopic and elemental partitioning of boron between hydrous fluid and silicate melt
- Experimental evidence of three coexisting immiscible fluids in synthetic granitic pegmatite
- Quantifying surface areas of clays by atomic force microscopy
- A new high-pressure phase of FeSi