Home A shell model for the simulation of rhombohedral carbonate minerals and their point defects
Article
Licensed
Unlicensed Requires Authentication

A shell model for the simulation of rhombohedral carbonate minerals and their point defects

  • Diana K. Fisler EMAIL logo , Julian D. Gale and Randall T. Cygan
Published/Copyright: March 25, 2015
Become an author with De Gruyter Brill

Abstract

The electronic polarization of oxygen ions has been explicitly incorporated in a shell model to better simulate the structure of calcite and related rhombohedral carbonate minerals. Pair-potentials for Ca2+ ions and C and O comprising the carbonate molecular ion were simultaneously fitted to experimental lattice, elastic, dielectric, and vibrational data for calcite, and the structure and elastic properties of aragonite. The resulting potential parameters for the CO32- group were then transferred to models for the structures and bulk moduli of the carbonate minerals incorporating Mn, Fe, Mg, Ni, Zn, Co, Cd, and thus a fully consistent set of interaction parameters for calculating the properties of the carbonate minerals was obtained. Defect energies for doping the divalent cations into the calcite structure, and for calcium and carbonate ion vacancies were calculated. In addition, various disorder types for dolomite, including anti-site defects, stacking defects, and the energy related to increasing the Ca/Mg ratio in the dolomite structure were simulated. The theoretical enthalpy for dolomite ordering (34.4 kJ/mol) compares very well with experimental measurements.

Received: 1998-5-18
Accepted: 1999-9-8
Published Online: 2015-3-25
Published in Print: 2000-1-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Eclogite-facies relics and inferred ultrahigh-pressure metamorphism in the North Dabie Complex, central-eastern China
  2. Application of INVEQ to the geothermobarometry of metamorphic rocks near a kyanite-sillimanite isograd, Mica Creek, British Columbia
  3. Microstructural characterization of metamorphic magnetite crystals with implications for oxygen isotope distribution
  4. Coexisting monazite and allanite in peraluminous granitoids of the TribečMountains, Western Carpathians
  5. Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt
  6. Direct observation of immiscibility in pyrope-almandine-grossular garnet
  7. On the cluster analysis of grains and crystals in rocks
  8. Experimental approach to constrain second critical end points in fluid/silicate systems: Near-solidus fluids and melts in the system albite-H2O
  9. Estimation and testing of standard molar thermodynamic properties of tourmaline end-members using data of natural samples
  10. An investigation of matrix effects in the analysis of fluorine in humite-group minerals by EMPA, SIMS, and SREF
  11. New data on the crystal-chemistry of fluoborite by means of SREF, SIMS, and EMP analysis
  12. Effect of aluminum on Ti-coordination in silicate glasses: A XANES study
  13. XAFS study of Cu model compounds and Cu2+ sorption products on amorphous SiO2, γ-Al2O3, and anatase
  14. Oxidation-reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites
  15. Oxidation-reduction mechanism of iron in dioctahedral smectites: II. Crystal chemistry of reduced Garfield nontronite
  16. 15N NMR study of nitrate ion structure and dynamics in hydrotalcite-like compounds
  17. 29Si and 27Al MAS-NMR spectroscopy of b-eucryptite (LiAlSiO4): The enthalpy of Si,Al ordering
  18. The nuclear and magnetic structure of “white rust”—Fe(OH0.86D0.14)2
  19. In-situ study of the R3̅ to R3̅c phase transition in the ilmenite-hematite solid solution using time-of-flight neutron powder diffraction
  20. In situ X-ray diffraction investigation of lawsonite and zoisite at high pressures and temperatures
  21. A shell model for the simulation of rhombohedral carbonate minerals and their point defects
  22. Optical properties of natural and cation-exchanged heulandite group zeolites
  23. The crystal structure of gearksutite, CaAlF4(OH)· H2O
  24. A new anhydrous amphibole from the Eifel region, Germany: Description and crystal structure of obertiite, NaNa2(Mg3Fe3+Ti4+)Si8O22O2
  25. Kinoshitalite, Ba(Mg)3(Al2Si2)O10(OH,F)2, a brittle mica from a manganese deposit in Oman: Paragenesis and crystal chemistry
  26. The crystal structure of parisite-(Ce), Ce2CaF2(CO3)3
  27. High-pressure synthesis of Na2Mg6Si6O18(OH)2—a new hydrous silicate phase isostructural with aenigmatite
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2000-0121/html
Scroll to top button