Home AC and DC Conductivity in Nano- and Microcrystalline Li2O : B2O3 Composites: Experimental Results and Theoretical Models
Article
Licensed
Unlicensed Requires Authentication

AC and DC Conductivity in Nano- and Microcrystalline Li2O : B2O3 Composites: Experimental Results and Theoretical Models

  • Sylvio Indris , Paul Heitjans , Markus Ulrich and Armin Bunde
Published/Copyright: September 25, 2009

Abstract

We report on impedance measurements of nano- and microcrystalline composites of the Li ion conductor Li2O and the ionic insulator B2O3 as well as their interpretation in the frame of percolation models. In the experimental part, besides the dc conductivity and its dependence on composition and temperature (i.e. its activation energy) also the ac conductivity and its dependence on composition, temperature and frequency (i.e. the conductivity exponent) are presented. Striking differences between the nanocrystalline and the corresponding microcrystalline composites were found. Deviations of the ac from the dc results can be explained by the fact that the experiments probe ion dynamics on different time and thus length scales. In the theoretical part, a continuum percolation model, a brick-layer type bond percolation approach and a Voronoi construction are alternatively used to model the dc behaviour. Based merely on the largely different volume fractions of the interfaces between ionic conductor and insulator grains in the nano- and microcrystalline composites, good overall agreement with the experimental dc results is obtained. The high critical insulator content above which the experimental conductivity vanishes in the nanocrystalline composites suggests the presence of an additional Li diffusion passageway of nanometer length in the interface between nanocrystalline insulator grains.

Published Online: 2009-9-25
Published in Print: 2005-1-1

© 2005 Oldenbourg Wissenschaftsverlag GmbH

Downloaded on 21.10.2025 from https://www.degruyterbrill.com/document/doi/10.1524/zpch.219.1.89.55015/html
Scroll to top button