Home Physical Sciences Ab Initio Study of Cooperative Effects in Complexes X:HBO:Z, with X, Z=LiH, HNC, HF, HCN, HCl, ClF, and HBO: Structures, Binding Energies, and Spin-Spin Coupling Constants across Intermolecular Bonds
Article
Licensed
Unlicensed Requires Authentication

Ab Initio Study of Cooperative Effects in Complexes X:HBO:Z, with X, Z=LiH, HNC, HF, HCN, HCl, ClF, and HBO: Structures, Binding Energies, and Spin-Spin Coupling Constants across Intermolecular Bonds

  • Janet Elaine Del Bene , Ibon Alkorta , Goar Sánchez-Sanz and José Elguero
Published/Copyright: March 25, 2013

Abstract

A systematic ab initio investigation has been carried out to determine the structures, binding energies, and spin-spin coupling constants of ternary complexes X:HBO:Z for X, Z= LiH, HNC, HF, HCN, HCl, ClF, and HBO. All complexes X:HBO:Z are linear with C∞ v symmetry, except for HCl:HBO:Z and ClF:HBO:Z which have Cs symmetry, thereby reflecting the structures of the corresponding X:HBO and HBO:Z complexes. Cooperative effects on energies are synergistic in all ternary complexes. The enhanced binding energies of complexes X:HBO:Z correlate with the binding energies of the X:HBO and HBO:Z complexes. Coupling constants 1J(B-H) and 2hJ(B-A) across B-H···sA hydrogen bonds correlate with the B-A distance, and exhibit synergistic effects due to the presence of Z. 1hJ(H-A) indicates that these bonds have little proton-shared character. Coupling constants across D-H···sO hydrogen bonds, H-Li···sO lithium bonds, and F-Cl···sO halogen bonds are also sensitive to the synergistic effects arising from the presence of X. D-H···sO hydrogen bonds in ternary complexes are traditional (normal) hydrogen bonds.


* Correspondence address: Youngstown State University, Department of Chemistry, 1 University Plaza, Youngstow, Ohio 44555, U.S.A.,

Published Online: 2013-3-25
Published in Print: 2013-6-1

© by Oldenbourg Wissenschaftsverlag, München, Germany

Articles in the same Issue

  1. Editorial
  2. Biography of Prof. Dr. Hans-Heinrich Limbach
  3. Alumni and long term guests of the Limbach group
  4. NMR and FT-IR Studies on the Association of Derivatives of Thymidine, Adenosine, and 6-N-Methyl-Adenosine in Aprotic Solvents
  5. Competition between Hydrogen Bonds and Lewis Acid-Base Interactions in the Equilibria between Bis(pentafluorophenyl)borinic Acid and Pyridine: Insights from NMR, Diffractometric and Computational Studies
  6. Energy Analysis of Competing Non-Covalent Interaction in 1:1 and 1:2 Adducts of Collidine with Benzoic Acids by Means of X-Ray Diffraction
  7. A TT Dinucleotide with a Nonionic Silyl Backbone: Impact on Conformation and H-Bond Mediated Base Pairing as Studied by Low-Temperature NMR
  8. Oxygen and Hydrogen Isotopic Preference in Hydration Spheres of Chloride and Sulfate Ions
  9. Ab Initio Study of Cooperative Effects in Complexes X:HBO:Z, with X, Z=LiH, HNC, HF, HCN, HCl, ClF, and HBO: Structures, Binding Energies, and Spin-Spin Coupling Constants across Intermolecular Bonds
  10. The Structure and Dynamic Properties of 1H-Pyrazole-4-Carboxylic Acids in the Solid State
  11. Acridine – a Promising Fluorescence Probe of Non-Covalent Molecular Interactions
  12. First Example of Hydrogen Bonding to Platinum Hydride
  13. Interaction of Hydrogen with a Cobalt(0001) Surface
  14. Immobilization and Characterization of RuCl2(PPh3)3 Mesoporous Silica SBA-3
  15. Secondary Isotope Effects on 13C and 15N Chemical Shifts of Schiff Bases Revisited
  16. Analysis of Nutation Patterns in Fourier-Transform NMR of Non-Thermally Polarized Multispin Systems
  17. The Structure of Supercooled Water and the Mechanism of Homogeneous Nucleation of Ice Ih
  18. Probing Small Protonated Water Clusters in Acetonitrile Solutions by 1H NMR
  19. Double Hydrogen Transfer in Low Symmetry Porphycenes
  20. Nuclear Spin Selective Torsional States: Implications of Molecular Symmetry
Downloaded on 18.1.2026 from https://www.degruyterbrill.com/document/doi/10.1524/zpch.2013.0367/html
Scroll to top button