Deep UV Resonance Raman Spectroscopy with a Tunable 4 kHz Nanosecond Solid-State Laser and a 1 mL Circulating Free-Flow System
-
Andreas Bröermann
and Sebastian Schlücker
Abstract
Deep UVRR spectra of the aromatic amino acids Phe and Tyr in the wavenumber range 800–1800 cm−1 with λexc=195–208 nm exhibit a selective enhancement of signals arising from vibrations localized in the aromatic ring. For λexc>198 nm, the UVRR spectra of Phe and Tyr are dominated by contributions from the in-plane ring stretching modes ν8a and ν8b at ∼1600 cm−1. For λexc≤198 nm, intense signals from the symmetric ring stretching, in-plane C–H bending and phenyl–C stretching vibrations below 1400 cm−1 are observed. Excellent stray light rejection is achieved by a triple monochromator, which can be used either in the additive or subtractive mode for high-resolution and low-wavenumber measurements, respectively. A home-built circulating free-flow system allows the investigation of sample volumes as small as 1 mL.
© by Oldenbourg Wissenschaftsverlag, München, Germany
Articles in the same Issue
- Preface – The Many Facets of Raman Spectroscopy
- Vibrational Spectroscopic Studies of Germanium-High Bismuthate Glasses and Vitroceramics
- SERS Study and DFT Simulation of the Interaction of Cytosine with Copper Electrode
- Precise Analysis of Small Wavenumber Shift of Pyridine on Dilution with H2O and D2O Using RDS Technique
- Deep UV Resonance Raman Spectroscopy with a Tunable 4 kHz Nanosecond Solid-State Laser and a 1 mL Circulating Free-Flow System
- Interference Effects in Vibronic 2D-Spectra of Diatomic Molecules
- Threshold Photoelectron Spectrum of Isolated NTCDA
- Study of Hydrogen Bonding Patterns of a Pharmaceutically Active Drug Molecule Paraldehyde: a Raman and DFT Study
- Femtosecond Coherence Spectroscopic Study of the Onset of Chemical Denaturation of Myoglobin upon Addition of Minor Amounts of Urea
- Checking and Improving Calibration of Raman Spectra using Chemometric Approaches
- The Influence of Short-Day Photoperiods on Bone Composition of Hamsters: a Raman Spectroscopic Investigation
- Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) Based on Gold-Core Silica-Shell Nanorods
- Fourier Transform Raman and DFT Study of Blue Shift C–H Stretching Vibration of Diazines on Hydrogen Bond Formation
Articles in the same Issue
- Preface – The Many Facets of Raman Spectroscopy
- Vibrational Spectroscopic Studies of Germanium-High Bismuthate Glasses and Vitroceramics
- SERS Study and DFT Simulation of the Interaction of Cytosine with Copper Electrode
- Precise Analysis of Small Wavenumber Shift of Pyridine on Dilution with H2O and D2O Using RDS Technique
- Deep UV Resonance Raman Spectroscopy with a Tunable 4 kHz Nanosecond Solid-State Laser and a 1 mL Circulating Free-Flow System
- Interference Effects in Vibronic 2D-Spectra of Diatomic Molecules
- Threshold Photoelectron Spectrum of Isolated NTCDA
- Study of Hydrogen Bonding Patterns of a Pharmaceutically Active Drug Molecule Paraldehyde: a Raman and DFT Study
- Femtosecond Coherence Spectroscopic Study of the Onset of Chemical Denaturation of Myoglobin upon Addition of Minor Amounts of Urea
- Checking and Improving Calibration of Raman Spectra using Chemometric Approaches
- The Influence of Short-Day Photoperiods on Bone Composition of Hamsters: a Raman Spectroscopic Investigation
- Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) Based on Gold-Core Silica-Shell Nanorods
- Fourier Transform Raman and DFT Study of Blue Shift C–H Stretching Vibration of Diazines on Hydrogen Bond Formation