An electron diffraction study of Cu ordering in Cu2.33-xV4O11
-
Ray L. Withers
The temperature-dependent electron diffraction study has been made of Cu ion ordering in the vanadium oxide bronze Cu2.33-xV4O11. Evidence is thereby found (at low temperature) for two distinct incommensurate modulations associated with the three-dimensional ordering of Cu ions in each of two distinct channel types which run along b between the V4O11 layers of the average structure. The primary modulation wave-vector associated with the first modulation q1= 1/2 c* is associated with Cu ion ordering and associated structural relaxation in the first type of tunnel while the second type of modulation (characterized by the primary modulation wave-vector q2=±1/2a* +~0.16b*) is presumed to be associated with Cu ion ordering in the remaining, or thetrahedral, tunnel type. This second modulation only appears to condense out at low temperature.
© 2015 Oldenbourg Wissenschaftsverlag GmbH, Rosenheimer Str. 145, 81671 München
Articles in the same Issue
- Cocrystallization of chiral cobalt complexes via formation of quasiracemates
- An X-ray profile analysis on the growth imperfections and internal strains in vapour-deposited lead films
- Solving crystal structures without Fourier mapping. II. Non-centrosymmetric case
- On the question of commensurability – The Nowotny chimney-ladder structures revisited
- Analysis of occupational and displacive disorder using the atomic pair distribution function: a systematic investigation
- The nature of the incommensurate structure in åkermanite, Ca2MgSi2O7, and the character of its transformation from the normal structure
- Thermal annealing of metamict titanite: A synchrotron radiation and optical birefringence study
- Thermal motion of the univalent metal ions in KCr5S8-type chalcogenides, ternary chromium selenides MxCr5Se8 (M = Rb, Cs)
- An electron diffraction study of Cu ordering in Cu2.33-xV4O11
- Variable temperature study of the crystal structure of paracetamol (p-hydroxyacetanilide), by single crystal neutron diffraction
- A comparison of the molecular and crystal structures of the dimethylacetamide complexes from zinc chloride, bromide, and iodide
Articles in the same Issue
- Cocrystallization of chiral cobalt complexes via formation of quasiracemates
- An X-ray profile analysis on the growth imperfections and internal strains in vapour-deposited lead films
- Solving crystal structures without Fourier mapping. II. Non-centrosymmetric case
- On the question of commensurability – The Nowotny chimney-ladder structures revisited
- Analysis of occupational and displacive disorder using the atomic pair distribution function: a systematic investigation
- The nature of the incommensurate structure in åkermanite, Ca2MgSi2O7, and the character of its transformation from the normal structure
- Thermal annealing of metamict titanite: A synchrotron radiation and optical birefringence study
- Thermal motion of the univalent metal ions in KCr5S8-type chalcogenides, ternary chromium selenides MxCr5Se8 (M = Rb, Cs)
- An electron diffraction study of Cu ordering in Cu2.33-xV4O11
- Variable temperature study of the crystal structure of paracetamol (p-hydroxyacetanilide), by single crystal neutron diffraction
- A comparison of the molecular and crystal structures of the dimethylacetamide complexes from zinc chloride, bromide, and iodide