Solving crystal structures without Fourier mapping. II. Non-centrosymmetric case
-
K. Pilz
An algebraic method for the determination of one-dimensional centrosymmetric structures (or projections) of equal atoms has been extended to crystals without a centre of symmetry. The technique is an (almost) ab initio one, provides higher resolution than a Fourier map using the same number of structure factors, and permits either a unique solution compatible with the data employed or provides all possible solutions. It appears suitable in particular for partial structures with not too many atoms per asymmetric unit (e.g. anomalous scatterers in a biological crystal structure). It only needs rather selected data: from central reciprocal lattice rows for one-dimensional projections plus from (at least) two rows parallel to the first ones for three-dimensional structures.
© 2015 Oldenbourg Wissenschaftsverlag GmbH, Rosenheimer Str. 145, 81671 München
Articles in the same Issue
- Cocrystallization of chiral cobalt complexes via formation of quasiracemates
- An X-ray profile analysis on the growth imperfections and internal strains in vapour-deposited lead films
- Solving crystal structures without Fourier mapping. II. Non-centrosymmetric case
- On the question of commensurability – The Nowotny chimney-ladder structures revisited
- Analysis of occupational and displacive disorder using the atomic pair distribution function: a systematic investigation
- The nature of the incommensurate structure in åkermanite, Ca2MgSi2O7, and the character of its transformation from the normal structure
- Thermal annealing of metamict titanite: A synchrotron radiation and optical birefringence study
- Thermal motion of the univalent metal ions in KCr5S8-type chalcogenides, ternary chromium selenides MxCr5Se8 (M = Rb, Cs)
- An electron diffraction study of Cu ordering in Cu2.33-xV4O11
- Variable temperature study of the crystal structure of paracetamol (p-hydroxyacetanilide), by single crystal neutron diffraction
- A comparison of the molecular and crystal structures of the dimethylacetamide complexes from zinc chloride, bromide, and iodide
Articles in the same Issue
- Cocrystallization of chiral cobalt complexes via formation of quasiracemates
- An X-ray profile analysis on the growth imperfections and internal strains in vapour-deposited lead films
- Solving crystal structures without Fourier mapping. II. Non-centrosymmetric case
- On the question of commensurability – The Nowotny chimney-ladder structures revisited
- Analysis of occupational and displacive disorder using the atomic pair distribution function: a systematic investigation
- The nature of the incommensurate structure in åkermanite, Ca2MgSi2O7, and the character of its transformation from the normal structure
- Thermal annealing of metamict titanite: A synchrotron radiation and optical birefringence study
- Thermal motion of the univalent metal ions in KCr5S8-type chalcogenides, ternary chromium selenides MxCr5Se8 (M = Rb, Cs)
- An electron diffraction study of Cu ordering in Cu2.33-xV4O11
- Variable temperature study of the crystal structure of paracetamol (p-hydroxyacetanilide), by single crystal neutron diffraction
- A comparison of the molecular and crystal structures of the dimethylacetamide complexes from zinc chloride, bromide, and iodide