Synthesis and characterization of hydroxyapatite powders with PVDF and SiO2 by the hydrothermal method for biomedical applications
-
Mary Sinthiya Robinson
, Elavarasi Chandrasekar , Oviya Sekar , Irine Maria Bincy Francis and Collins Arun Prakash Victor
Abstract
This paper reports the synthesis and characterization of nano-hydroxyapatite (HAP) powders using polyvinylidene fluoride (PVDF) and silica gel (SiO2) via the hydrothermal method. The objective was to develop a biocompatible and bioactive material with desirable morphological features that would enhance its potential biomedical applications. The hydrothermal synthesis involved the dispersion of PVDF and SiO2 within a controlled environment with simultaneous precipitation of HAP. The resulting HAP powders were characterized using various techniques, including PXRD, FTIR, SEM, TEM, and TGA, to evaluate the material purity, phase composition, and structural morphology. Nano-HAP powders were synthesized via the hydrothermal method using PVDF and SiO2. Characterization techniques confirmed high purity, crystallinity, porous morphology, and thermal stability. Bioactivity and cytotoxicity tests showed excellent cell adhesion, growth, and safety. Uniform dispersion in PVDF and suitable porosity suggest potential for tissue engineering, bioactive coatings, and bone scaffolds. Initial in vitro studies confirmed non-cytotoxicity, supporting biomedical applications, with further work on implant coatings underway. Cytotoxicity tests revealed high cell viability, suggesting low toxicity and strong support for human fibroblast proliferation. Morphological analyses validated homogeneous fiber structure and particle distribution. The obtained results indicate that nano HAP powders with regulated, enhanced, or favorable shapes can be successfully formed to support cell growth, making them a promising material for biomedical applications.
Funding source: DonBosco Grant
Award Identifier / Grant number: 2025-26/10
Acknowledgement
We thank the Abdul Kalam Research Centre (AKRC), Sacred Heart College (Autonomous), Tirupattur, for providing the research facilities. We also express our gratitude to Dr. S. A. Martin Britto Dhas for his timely support and assistance with data curation throughout the preparation of this manuscript.
-
Research ethics: This study did not involve human participants or animal subjects. Therefore, ethical approval was not required.
-
Informed consent: Not applicable. No human participants were involved in this research.
-
Author contributions: All authors have read and agreed to the published version of the manuscript.
-
Use of Large Language Models, AI and Machine Learning Tools: Large Language Models (e.g., ChatGPT) were used only for improving the clarity of language and grammar. All scientific interpretations, data analyses, and conclusions were made entirely from the literature survey. The authors verified all AI-assisted text for accuracy.
-
Conflict of interest: The authors declare no conflicts of interest related to this work.
-
Research funding: This work was supported by Abdul Kalam Research Centre (AKRC), Sacred Heart College (Autonomous), Tirupattur, for the financial assistance received under the “DonBosco Grant” scheme (SHC/DB Grant/2025-26/10).
-
Data availability: The data will be made available from the corresponding author based on the request.
References
1. Hench, L. L. Bio Ceramics: From Concept to Clinic. J. Am. Ceram. Soc. 1991, 74, 1487. https://doi.org/10.1111/j.1151-2916.1991.tb07132.x.Search in Google Scholar
2. Weiner, S.; Wagner, H. D. Annual. The Material Bone: Structure- Mechanical Functions Relations. Mater. Sci. 1998, 28, 271–298. https://doi.org/10.1146/annurev.matsci.28.1.271.Search in Google Scholar
3. Takagi, S.; Chow, L.; Ishikawa, K. Formation of Hydroxyapatite in New Calcium Phosphate Cements. Biomaterials 1998, 19 (17), 1593–2159. https://doi.org/10.1016/s0142-9612(97)00119-1.Search in Google Scholar PubMed
4. Ismail, R.; Cionita, T.; Lai, Y. L.; Fitriyana, D. F.; Siregar, J. P.; Bayuseno, A. P.; Nugraha, F. W.; Muhamadin, R. C.; Irawan, A. P.; Hadi, A. E. Characterization of PLA/PCL/green Mussel Shells Hydroxyapatite (HA) Bio Composites Prepared by Chemical Blending Methods. Materials 2022, 15 (23), 8641. https://doi.org/10.3390/ma15238641.Search in Google Scholar PubMed PubMed Central
5. Hutmacher, D. W.; Schantz, J. T.; Lam, C. X. F.; Tan, K. C.; Lim, T. C. State of the Art and Future Directions of Scaffold-based Bone Engineering from a Biomaterials Perspective. J. Tissue Eng. Regen. Med. 2007, 1, 245–260. https://doi.org/10.1002/term.24.Search in Google Scholar PubMed
6. Habraken, W.; Wolke, J. G. C.; Jansen, J. A. Ceramic Composites as Matrices and Scaffolds for Drug Delivery in Tissue Engineering. Adv. Drug Deliv. Rev. 2007, 59, 234–248. https://doi.org/10.1016/j.addr.2007.03.011.Search in Google Scholar PubMed
7. Wang, G.; Zreiqat, H. Functional Coatings or Films for Hard-tissue Applications. Materials 2010, 3 (7), 3994–4050. https://doi.org/10.3390/ma3073994.Search in Google Scholar PubMed PubMed Central
8. Ines, S. N.; Yury, V. K.; Oleg, I. L.; Van Tendeloo, G.; Gupta, H. S.; Guitián, F.; Yoshimura, M. An Effective Morphology Control of Hydroxyapatite Crystals via Hydrothermal Synthesis. Cryst. Growth Des. 2009, 9, 466–474. https://doi.org/10.1021/cg800738a.Search in Google Scholar
9. Chaudhry, A. A.; Haque, S.; Kellici, S.; Boldrin, P.; Rehman, I.; Khalid, F. A.; Darr, J. A. Instant Nano-hydroxyapatite: A Continuous and Rapid Hydrothermal Synthesis. Chem. Commun. 2006, 21, 2286–2288. https://doi.org/10.1039/b518102j.Search in Google Scholar PubMed
10. Bigi, A.; Boanini, E.; Rubini, K. Hydroxyapatite Gels and Nano-crystals Prepared through a sol–gel Process. J. Solid State Chem. 2004, 177, 3092–3098. https://doi.org/10.1016/j.jssc.2004.05.018.Search in Google Scholar
11. Phillips, M. J.; Darr, J. A.; Luklinska, Z. B.; Rehman, I. Synthesis and Characterization of Nano-biomaterials with Potential Osteological Applications. J. Mater. Sci. Mater. Med. 2003, 14, 875–882. https://doi.org/10.1023/a:1025682626383.10.1023/A:1025682626383Search in Google Scholar PubMed
12. Sun, Y.; Guo, G.; Wang, Z.; Guo, H. Synthesis of Single-crystal HAP Nano Rods. Ceram. Int. 2006, 32, 951–954. https://doi.org/10.1016/j.ceramint.2005.07.023.Search in Google Scholar
13. Khan, N. A.; Jhung, S. H. Synthesis of Metal-organic Frameworks (MOFs) with Microwave or Ultrasound: Rapid Reaction, Phase-selectivity, and Size Reduction. Coord. Chem. Rev. 2015, 285, 11–23. https://doi.org/10.1016/j.ccr.2014.10.008.Search in Google Scholar
14. Schwenke, A. M.; Hoeppener, S.; Schubert, U. S. Synthesis and Modification of Carbon Nanomaterials Utilizing Microwave Heating. Adv. Mater. 2015, 27, 4113–4141. https://doi.org/10.1002/adma.201500472.Search in Google Scholar PubMed
15. Gopi, D.; Govindaraju, K. M.; Collins Arun Prakash, V.; Kavitha, L.; Rajendran, N. Spectroscopic Investigations of Nanohydroxyapatite Powders Synthesized by Conventional and Ultrasonic Coupled Sol–Gel Routes. Spectrochim. Acta, Part A 2008, 70, 1243–1245.10.1016/j.saa.2008.02.015Search in Google Scholar PubMed
16. Sadat-Shojai, M.; Khorasani, M. T.; Dinpanah-Khoshdargi, E.; Jamshidi, A. Synthesis Methods for Nanosized Hydroxyapatite with Diverse Structures. Acta Biomater. 2013, 9, 7591–7621. https://doi.org/10.1016/j.actbio.2013.04.012.Search in Google Scholar PubMed
17. Sathiyavimal, S.; Vasantharaj, S.; LewisOscar, F.; Selvaraj, R.; Brindhadevi, K.; Pugazhendhi, A. Natural Organic and Inorganic–hydroxyapatite Biopolymer Composite for Biomedical Applications. Prog. Org. Coat. 2020, 147, 105858. https://doi.org/10.1016/j.porgcoat.2020.105858.Search in Google Scholar
18. Vasilev, K.; Cook, J.; Griesser, H. J. Antibacterial Surfaces for Biomedical Devices. Expet Rev. Med. Dev. 2009, 6, 553–567; https://doi.org/10.1586/erd.09.36.Search in Google Scholar PubMed
19. Dumitrescu, L. N.; Neacsu, P.; Necula, M. G.; Bonciu, A.; Marascu, V.; Cimpean, A.; Moldovan, A.; Rotaru, A.; Dinca, V.; Dinescu, M. Induced Hydrophilicity and in vitro Preliminary Osteoblast Response of Polyvinylidene Fluoride (PVDF) Coatings Obtained via Maple Deposition and Subsequent Thermal Treatment. Molecules 2020, 25 (3), 582. https://doi.org/10.3390/molecules25030582.Search in Google Scholar PubMed PubMed Central
20. Xu, Q.; Gao, X.; Zhao, S.; Liu, Y. N.; Zhang, D.; Zhou, K.; Khanbareh, H.; Chen, W.; Zhang, Y.; Bowen, C. Construction of Bio-piezoelectric Platforms: From Structures and Synthesis to Applications. Adv. Mater. 2021, 33 (27), 2008452. https://doi.org/10.1002/adma.202008452.Search in Google Scholar PubMed PubMed Central
21. Shirin Akter, J.; Yousuf, M.; Mollah, A.; Samina, A. Nano-Hydroxyapatite Prepared from Eggshell-derived Calcium Precursor Using Reverse Microemulsions as Nanoreactor Biomater. Artif. Organs 2017, 4, 5497–5506.10.1016/j.matpr.2017.06.005Search in Google Scholar
22. Shi, Z.; Huang, X.; Cai, Y.; Tang, R.; Yang, D. Size Effect of Hydroxyapatite Nanoparticles on Proliferation and Apoptosis of Osteoblast-like Cells. Acta Biomater. 2009, 5 (1), 338–345. https://doi.org/10.1016/j.actbio.2008.07.023.Search in Google Scholar PubMed
23. Pang, Y. X.; Bao, X. Influence of Temperature, Ripening Time and Calcination on the Morphology and Crystallinity of Hydroxyapatite Nanoparticles. J. Eur. Ceram. Soc. 2003, 23, 1697–1704. https://doi.org/10.1016/s0955-2219(02)00413-2.Search in Google Scholar
24. Ślósarczyk, A.; Paszkiewiczl, Z.; Zima, A. The Effect of Phosphate Source on the Sintering of Carbonate Substituted Hydroxyapatite. Ceram. Int. 2010, 36, 577–582. https://doi.org/10.1016/j.ceramint.2009.09.032.Search in Google Scholar
25. Cho, J. W., Sul, K. I. Crystallization of poly(vinylidene fluoride)–SiO2 Hybrid Composites Prepared by a sol–gel Process, Fibers Polym. 2001, 2, 135–140. https://doi.org/10.1007/bf02875326.Search in Google Scholar
26. Fathi, M. H.; Hanifi, A.; Mortazavi, V. Preparation and Bioactivity Evaluation of Bone-like Hydroxyapatite Nano Powder. J. Mater. Process. Technol. 2008, 202, 536–542. https://doi.org/10.1016/j.jmatprotec.2007.10.004.Search in Google Scholar
27. Wang, X.; Wang, M.; Song, H.; Ding, B. A Simple sol-gel Technique for Preparing Lanthanum Oxide Nanopowders. Mater. Lett. 2006, 60, 2261–2265. https://doi.org/10.1016/j.matlet.2005.12.142.Search in Google Scholar
28. Niasaria, M. S.; Hosseinzadeh, G.; Davar, F. Synthesis of Lanthanum Carbonate Nanoparticles via Sonochemical Method for Preparation of Lanthanum Hydroxide and Lanthanum Oxide Nanoparticles. J. Alloys Compd. 2011, 509, 134–140. https://doi.org/10.1016/j.jallcom.2010.09.006.Search in Google Scholar
29. Gibson, I. R.; Patel, N.; Best, S. M.; Bonfield, W.; Hing, K. A.; Damien, E.; Revell, P. A. Silicon-Substituted Hydroxyapatite: Synthesis and Structure. J. Mater. Sci.: Mater. Med. 2000, 11 (7), 399–404.Search in Google Scholar
30. Zhukov, A. N.; Sidorov, N. S.; Palnichenko, A. V.; Avdonin, V. V.; Shakhrai, D. V. Influence of Shock-wave Pressure up to 65GPa on the Crystal Structure and Superconducting Properties of MgB2, High Press. Res. 2009, 29, 414–421. https://doi.org/10.1080/08957950903119370.Search in Google Scholar
31. Holland, T. J. B.; Redfernl, S. A. T. UNITCELL: A Nonlinear East-squares Program for Cell-parameter Refinement Implementing Regression and Deletion Diagnostics. J. Appl. Crystallogr. 1997, 30, 84. https://doi.org/10.1107/s0021889896011673.Search in Google Scholar
32. Liu, L.; Ni, X.; Xiong, X.; Ma, J.; Zeng, X. Low Temperature Preparation of SiO2 Reinforced Hydroxyapatite Coating on Carbon/Carbon Composites. J. Alloys Compd. 2019, 788, 798–778. https://doi.org/10.1016/j.jallcom.2019.02.286.Search in Google Scholar
33. Sajjad, A.; Bakar, W. Z. W.; Mohamad, D.; Kannan, T. P. Characterization and Enhancement of Physico-Mechanical Properties of Glass Ionomer Cement by Incorporating a Novel Nano Zirconia Silica Hydroxyapatite Composite Synthesized via Sol-Gel. AIMS Mater. Sci. 2019, 6 (5), 730–747. https://doi.org/10.3934/matersci.2019.5.730.Search in Google Scholar
34. Wang, H.; Zhai, L.; Li, Y.; Shi, T. Preparation of Irregular Mesoporous Hydroxyapatite. Mater. Res. Bull. 2008, 43 (6), 1607–1614. https://doi.org/10.1016/j.materresbull.2007.06.034.Search in Google Scholar
35. Koutsopoulos, S. Synthesis and Characterization of Hydroxyapatite Crystals: A Review Study on the Analytical Methods. J. Biomed. Mater. Res. 2002, 62 (4), 600–612. https://doi.org/10.1002/jbm.10280.Search in Google Scholar PubMed
36. Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds Part B: Applications in Coordination, Organometallic and Bioinorganic Chemistry, 6th ed.; John Wiley & Sons: New York, 2008.10.1002/9780470405888Search in Google Scholar
37. Gopi, D.; Indira, J.; Collins Arun Prakash, V.; Kavitha, L. Spectroscopic Characterization of Porous Nano Hydroxyapatite Synthesized by a Novel Amino Acid Soft Solution Freezing Method. Spectrochim. Acta Mol. Biomol. Spectrosc. 2009, 74, 282–284. https://doi.org/10.1016/j.saa.2009.05.021.Search in Google Scholar PubMed
38. Koutsopoulos, S. Synthesis and Characterization of Hydroxyapatite Crystals: A Review Study on the Analytical Methods. J. Biomed. Mater. Res. 2002, 62, 600–612. https://doi.org/10.1002/jbm.10280.Search in Google Scholar
39. Mishra, K.; Hashmi, S. A.; Rai, D. K. Protic Ionic Liquid-based Gel Polymer Electrolyte: Structural and Ion Transport Studies and its Application in Proton Battery. J. Solid State Electrochem. 2014, 18, 2255–2266. https://doi.org/10.1007/s10008-014-2475-2.Search in Google Scholar
40. Wang, T. H.; Wu, M. S.; Chang, H. C. Characterization of Local Structures of Confined Imidazolium Ionic Liquids in pvdf-co-hfp Matrices by High Pressure Infrared Spectroscopy. Nanomaterials 2020, 10, 1–14. https://doi.org/10.3390/nano10101973.Search in Google Scholar PubMed PubMed Central
41. Szterner, P.; Biernat, M. The Synthesis of Hydroxyapatite by Hydrothermal Process with Calcium Lactate Pentahydrate: The Effect of Reagent Concentrations, pH, Temperature, and Pressure. Bioinorgan. Chem. Appl. 2022, 2022, 13.10.1155/2022/3481677Search in Google Scholar PubMed PubMed Central
42. Huo, Q. H.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F. Organization of Organic Molecules with Inorganic Molecular Species into Nano Composite Biphase Arrays. Chem. Mater. 1994, 6, 1176–1191. https://doi.org/10.1021/cm00044a016.Search in Google Scholar
43. Monnier, A.; Schuth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F. Cooperative Formation of Inorganic-organic Interfaces in the Synthesis of Silicate Meso Structures. Science 1993, 261, 1299–1303. https://doi.org/10.1126/science.261.5126.1299.Search in Google Scholar PubMed
44. Dos Santos, G. G.; Malherbi, M. S.; de Souza, N. S.; César, G. B.; Tominaga, T. T.; Miyahara, R. Y.; de Mendonça, P. d. S. B.; Faria, D. R.; Rosso, J. M.; Freitas, V. F.; Weinand, W. R.; Dias, G. S.; Santos, I. A.; Cotica, L. F.; Bonadio, T. G. M. 4th Generation Biomaterials Based on PVDF-hydroxyapatite Composites Produced by Electrospinning: Processing and Characterization. Polymers 2022, 14, 4190. https://doi.org/10.3390/polym14194190.Search in Google Scholar PubMed PubMed Central
45. Tandon, B.; Kamble, P.; Olsson, R. T.; Blaker, J. J.; Cartmell, S. H. Fabrication and Characterisation of Stimuli Responsive Piezoelectric PVDF and Hydroxyapatite-Filled PVDF Fibrous Membranes. Molecules 2019, 24, 1903. https://doi.org/10.3390/molecules24101903.Search in Google Scholar PubMed PubMed Central
46. Mondal, S.; Dey, A.; Pal, U. Low Temperature wet-chemical Synthesis of Spherical Hydroxyapatite Nanoparticles and their in-situ Cytotoxicity Study. Adv. Nano Res. 2016, 4, 295–307. https://doi.org/10.12989/anr.2016.4.4.295.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston