Home Comparative analysis of nonlinear optical properties in santalin A and santalin B: a density functional theory approach
Article
Licensed
Unlicensed Requires Authentication

Comparative analysis of nonlinear optical properties in santalin A and santalin B: a density functional theory approach

  • Sreeja Lakshmi S. , Kodakkat Parambil Safna Hussan , Peediyekkal Jayaram , Sabna Melethil and Palengara Sudheesh EMAIL logo
Published/Copyright: November 10, 2025

Abstract

This study investigates the non-linear optical (NLO) properties of Santalin A and Santalin B using density functional theory (DFT) at the B3LYP/6-311G+(d,p) level of theory, marking the first computational exploration of these properties for Santalin compounds. The comparative analysis reveals distinct differences in the physicochemical and electronic properties of the two compounds, influencing their potential applications. Santalin A, characterized by a tightly bound highest occupied molecular orbital (HOMO), a larger band gap, and higher ionization potential, exhibits greater stability, making it suitable for applications requiring resistance to electronic changes, such as insulation or semiconductor roles. Its higher dipole moment (7.04) and polarizability (8.01 × 10−40 C2 m2 J−1) suggest it could be more effective in advanced NLO applications, such as optical switching and second-harmonic generation. In contrast, Santalin B demonstrates higher reactivity with a less negative HOMO (−4.701 eV), a smaller band gap (2.040 eV), and greater electron affinity (2.66), indicating its potential for applications requiring enhanced conductivity, electron transfer, and flexibility, such as in organic electronics. Both compounds show notable NLO responses; Santalin A and B both exhibit remarkable nonlinear optical (NLO) properties, with Santalin A showing a higher dipole moment (7.0477 Debye vs. 6.53 Debye), greater anisotropic polarizability (48.55 × 10−39 C2 m2 J−1 vs. 37.12 × 10−39 C2 m2 J−1), and slightly stronger hyperpolarizability (1.13 × 10−50 C3 m3 J−2 vs. 1.06 × 10−50 C3 m3 J−2). Both molecules have similar second-order hyperpolarizabilities (γ), with Santalin A at −6.66753 × 10−61 C4 m4 J−3 and Santalin B at −6.76983 × 10−61 C4 m4 J−3, highlighting their potential for advanced NLO applications. However, Santalin A exhibits slightly more pronounced properties. The findings emphasize the importance of tailoring material selection based on specific application needs, with Santalin A being more suited for stability-driven contexts and Santalin B excelling in environments that demand high reactivity and conductivity.


Corresponding author: Palengara Sudheesh, Department of Physics, NSS College Manjeri, Malappuram, India, E-mail:

Acknowledgments

The authors express gratitude to the Department of Science and Technology, Government of India, for providing financial assistance to establish a laboratory as part of the FIST Level-0 program at MES Ponnani College in Ponnani, Kerala.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Arnone, A.; Camarda, L.; Merlini, L.; Nasini, G. Structures of the Red Sandalwood Pigments Santalins A and B. J. Chem. Soc. Perkin Trans. 1975, 1 (2), 186–194; https://doi.org/10.1039/p19750000186.Search in Google Scholar

2. John, B. CXI.-Researches on Santalin. Part I. Santalin and its Derivatives. J. Chem. Soc., Trans. 1879, 101, 1061–1074.10.1039/CT9120101061Search in Google Scholar

3. Therapeutic Potential of Pterocarpus santalinus.pdf.Search in Google Scholar

4. Ranjita, M.; Balakrishnan, M.; Ramalakshmi, A.; Thirupathi, V.; Rammohan, S.; Rinshana, P. F. Application of Santalin Dye Extracted from Pterocarpus santalinus (Red Sandalwood) as a Natural Colorimetric Indicator for Real-Time Monitoring of Spoilage in Ready-to-Cook Idly Batter. Plant Sci. Today 2024, 11 (1), 1–7; https://doi.org/10.14719/pst.5574.Search in Google Scholar

5. Sitio, R.; Akmal, M.; Marlina, M.; Gholib, G. Investigating Ethanolic Extract from Acehnese Lime (Citrus aurantifolia) Peel as Potential Anti-Hypercholesterolemia Agent. J. Human, Earth, Future 2024, 5 (3), 348–365; https://doi.org/10.28991/HEF-2024-05-03-04.Search in Google Scholar

6. Adnan, R.; Khan, B.; Rehman, N. U.; Ahmad, N.; Hanzala, F. M.; Aziz, S.; Soonmin, H.; Khan, M. Novel Ni/ZnO Nanocomposites for the Effective Photocatalytic Degradation of Malachite Green Dye. Civ. Eng. J. 2024, 10 (8), 2601–2614. 10.28991/CEJ-2024-010-08-011Search in Google Scholar

7. Puspa, V. R.; Zumaidar; Nurdin; Fitmawati. Phytochemicals and Bioactivities of Erigeron Sumatrensis Retz. from Gayo Highlands: Antioxidant, Antidiabetic, Anticancer. J. Human, Earth, Future 2025, 6 (1), 41–66. https://doi.org/10.28991/HEF-2025-06-01-04.10.28991/HEF-2025-06-01-04Search in Google Scholar

8. Gurudutt, K. N.; Seshadri, T. R. Constitution of the Santalin Pigments A and B. Phytochemistry 1974, 13 (12), 2845–2847.10.1016/0031-9422(74)80254-2Search in Google Scholar

9. Ravindranath, B.; Seshadri, T. R. Structural Studies on Santalin Permethyl Ether. Phytochemistry 1973, 12 (11), 2781–2788.10.1016/0031-9422(73)85099-XSearch in Google Scholar

10. Strych, S.; Trauner, D. Biomimetic Synthesis of Santalin A,B and Santarubin A,B, the Major Colorants of Red Sandalwood. Angew. Chem., Int. Ed. 2013, 52 (36), 9509–9512; https://doi.org/10.1002/anie.201302317.Search in Google Scholar PubMed

11. Aneesa, V. M.; Safna Hussan, K. P.; Lekshmi, S.; Babu, T. D.; Muraleedharan, K. Analysis of Non-Linear Optical Properties of Phytochemical Photosensitizers in Cancer Photodynamic Therapy by Quantum Computational. Results Chem. 2024, 8, 101580; https://doi.org/10.1016/j.rechem.2024.101580.Search in Google Scholar

12. Bolton, E. E.; Wang, Y.; Thiessen, P. A.; Bryant, S. H. Pubchem: Integrated Platform of Small Molecules and Biological Activities. Annu. Rep. Comput. Chem. 2008, 4, 217–241.10.1016/S1574-1400(08)00012-1Search in Google Scholar

13. Adnan; Shah, R.; Khan, B.; Rehman, N. U.; Ahmad, N.; Hanzala; Nisar; Zada, F. M.; Aziz, S.; Soonmin, H.; Khan, M. Gaussian 09 Revision C 01 Gaussian 09 Revis B01; Gaussian Inc: Wallingford, 2009.Search in Google Scholar

14. Suganda, R.; Sutrisno, E.; Wardana, I. W. GaussView 5 reference, vol. 53, no. 9. 2013.Search in Google Scholar

15. Umadevi, V.; Umadevi, P.; Santhanamoorthi, N.; Senthilkumar, L. Effect of Alkyl Chain on the NLO Property of Nonylphenol Isomers: A DFT Study. Monatsh. Chem. 2015, 146 (12), 1983–1994; https://doi.org/10.1007/s00706-015-1497-5.Search in Google Scholar

16. Wang, W. Y.; Du, X. F.; Ma, N. N.; Sun, S. L.; Qiu, Y. Q. Theoretical Investigation on Switchable Second-Order Nonlinear Optical (NLO) Properties of Novel Cyclopentadienylcobalt Linear [4]Phenylene Complexes. J. Mol. Model. 2013, 19 (4), 1779–1787; https://doi.org/10.1007/s00894-012-1681-z.Search in Google Scholar PubMed PubMed Central

17. Sangeetha, K. G.; Aravindakshan, K. K.; Hussan, K. P. S. Insight into the Theoretical and Experimental Studies of 1-Phenyl-3-Methyl-4-Benzoyl-5-Pyrazolone N(4)-Methyl-N(4)-Phenylthiosemicarbazone - A Potential NLO Material. J. Mol. Struct. 2017, 1150, 135–145; https://doi.org/10.1016/j.molstruc.2017.08.078.Search in Google Scholar

18. Mathammal, R.; Sangeetha, K.; Sangeetha, M.; Mekala, R.; Gadheeja, S. Molecular Structure, Vibrational, UV, NMR, HOMO-LUMO, MEP, NLO, NBO Analysis of 3,5 di tert butyl 4 Hydroxy Benzoic Acid. J. Mol. Struct. 2016, 1120, 1–14; https://doi.org/10.1016/j.molstruc.2016.05.008.Search in Google Scholar

19. Viji, A.; Sivaprakash, P.; Vijayakumar, R.; Balachandran, V.; Bathula, C.; Kim, H.-S.; Kim, I. Evaluation of Experimental and Computational Studies and Docking Studies of (2E)-1-(anthracen-9-yl)-3-(4-bromophenyl) prop-2-en-1-one Using a DFT Method. J. Mol. Struct. 2025, 1321, 140002; https://doi.org/10.1016/J.MOLSTRUC.2024.140002.Search in Google Scholar

20. Simhadri VSDNA, N.; Muniappan, M.; Kannan, I.; Viswanathan, S. Phytochemical Analysis and Docking Study of Compounds Present in a Polyherbal Preparation Used in the Treatment of Dermatophytosis. Curr. Med. Mycol. 2017, 3, 6–14; https://doi.org/10.29252/cmm.3.4.6.Search in Google Scholar PubMed PubMed Central

21. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; F Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. Gaussian 09 (Revision A.2), Wallingford, CT: Gaussian, Inc., 1998.Search in Google Scholar

22. Marc, R. R. Molecular properties from Gaussian calculations. In Foundations of Chemical Kinetics. A Handson Approach. IOP Publishing: Bristol, 2023. Search in Google Scholar

23. Jalbout, A. F.; Nazari, F.; Turker, L. Gaussian-based Computations in Molecular Science. J. Mol. Struct.: THEOCHEM 2004, 671 (1–3), 1–21.10.1016/S0166-1280(03)00347-6Search in Google Scholar

24. Safna Hussan, K. P.; Babu, T. D.; Pareeth, C. M.; Joshya, G.; Mathew, D.; Thayyil, M. S. Antioxidant Activity of Erlotinib and Gefitinib: Theoretical and Experimental Insights. Free Radic. Res. 2022, 56 (2), 196–208; https://doi.org/10.1080/10715762.2022.2065990.Search in Google Scholar PubMed

25. Safna Hussan, K. P.; Abdul Rahoof, K. A.; Medammal, Z.; Thayyil, M. S.; Babu, T. D. Theoretical Insights into the Radical Scavenging Activity of Glipizide: DFT and Molecular Docking Studies. Free Radic. Res. 2022, 56 (1), 53–62; https://doi.org/10.1080/10715762.2022.2034803.Search in Google Scholar PubMed

26. C. Li, Optical Kerr Effect and Self-focusing, vol. 1. 2016.10.1007/978-981-10-1488-8_5Search in Google Scholar

27. Kumar, A.; Yadav, M. P. S. Computational Studies of Third-Order Nonlinear Optical Properties of Pyridine Derivative 2-aminopyridinium p-toluenesulphonate Crystal. Pramana - J. Phys. 2017, 89 (1), 1–7; https://doi.org/10.1007/s12043-017-1397-9.Search in Google Scholar

28. Heussein, S. A. H.; Moustafa, H.; Ami, N. H.; Ahmed, M.; Ibrahim, E. L. S. TD-DFT Calculations, Electronic Structure, Biological Activity, NBO , NLO Analysis and Electronic Absorption Spectra of Some 3-formyl Chromone Derivatives. J. Phys. Theor. Chem. IAU Iran 2018, 15 (1), 47–78.Search in Google Scholar

29. Sophy, K. B.; Shedge, S. V.; Pal, S. Noniterative Density Functional Response Approach: Application to Nonlinear Optical Properties of p-nitroaniline and its Methyl-Substituted Derivatives. J. Phys. Chem. A 2008, 112 (44), 11266–11272; https://doi.org/10.1021/jp806204q.Search in Google Scholar PubMed

30. Tamer, Ö.; Şimşek, M.; Avcı, D.; Atalay, Y. Static/Dynamic First and Second Order Hyperpolarizabilities, Optimized Structures, IR, UV–Vis, 1H and 13C NMR Spectra for Effective Charge Transfer Compounds: A DFT Study. Spectrochim. Acta, Part A 2023, 286, 122005; https://doi.org/10.1016/J.SAA.2022.122005.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2025-0060).


Received: 2025-05-08
Accepted: 2025-09-25
Published Online: 2025-11-10

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2025-0060/pdf
Scroll to top button