Synergistic effect of in situ growth of highly porous ZIF-8 on black phosphorus nanosheets for enhanced photocatalytic and electrochemical performance
- 
            
            
        Shiloh Jessie Francisca Francis Aser Ravichandran
        , Sujin P. Jose , Dhanapandian Swaminathan and Krishnakumar Narendran 
Abstract
The present study examines the synthesis of black phosphorus nanosheets (BPNs) through the liquid-phase exfoliation of bulk black phosphorus, subsequently leading to the in situ growth of zeolitic imidazolate frameworks (ZIF-8) on PVP-stabilized BPNs. The synthesized nanocomposites were analyzed using various analytical techniques, confirming that ZIF-8 is effectively attached to the surface of BPNs, resulting in improved dispersion, a large surface area and an appropriate pore size distribution. Incorporating ZIF-8 into BPNs significantly improves the photocatalytic performance in the degradation of methylene blue (MB) and rhodamine 6G (R6G) dyes. The degradation efficiency is 88 % for both MB and R6G within 90 min of UV light irradiation, attributed to the enhanced capture of electrons and the reduction of photogenerated electron-hole pair recombination potential. Additionally, the electrochemical capacitance of the uniquely designed electrode materials is analyzed using electrochemical techniques. BPNs/ZIF-8 electrode exhibits a 40 % increase in capacity witha specific capacitance of 145 Fg−1 compared to BPNs, which show a specific capacitance of 98 Fg−1 at apotential scan rate of 10mVs -1. Moreover, the BPNs/ZIF-8 electrode material has excellent cyclic stability with acapacitive retention of 85 % after 9,500 cycles. The results indicate that this material holds considerable promise for applications in photocatalysis and supercapacitors, opening avenues for progress in these fields.
Acknowledgements
The authors, F. A. Shiloh Jessie Francisca and N. Krishnakumar, gratefully acknowledge the Department of Science and Technology and Ministry of Science and Technology, Government of India, for the financial assistance provided under the DST-Inspire Fellowship (Fellow Code: IF190788). The authors V. Raja and Sujin P. Jose, sincerely acknowledge the funding provided by UGC towards UGC Dr. DS Kothari Post-Doctoral Fellowship (No.F.4-2/2006 (BSR)/OT/20–21/0008). The views expressed herein do not necessarily reflect the official opinion of the donors.
- 
Research ethics: Not applicable. 
- 
Informed consent: Not applicable. 
- 
Author contributions: F. A. Shiloh Jessie Francisa: writing – original draft, methodology and investigation. V. Raja: writing, data curation, investigation, and formal analysis. Sujin P Jose: formal analysis, and resource. J. Mayandi: resource, formal analysis and validation. S. Dhanapandian: editing and review. N. Krishnakumar: conceptualization, writing – review and editing, and supervision. All authors have accepted responsibility for the entire content of this manuscript and approved its submission. 
- 
Use of Large Language Models, AI and Machine Learning Tools: None declared. 
- 
Conflict of interest: The authors state no conflict of interest. 
- 
Research funding: None declared. 
- 
Data availability: The data that has been used is confidential. 
References
1. Lee, K. C.; Hsiao, Y. S.; Sung, M. Y.; Chen, Y. L.; Wu, N. J.; Huang, J. H.; Cho, E. C.; Weng, H. C.; Hsu, S. C. J. Environ. Chem. Eng. 2023, 11 (5), 110762; https://doi.org/10.1016/j.jece.2023.110762.Search in Google Scholar
2. Narwade, V. N.; Rahane, G. K.; Bogle, K. A.; Tsai, M. L.; Rondiya, S. R.; Shirsat, M. D. J. Electron. Mater. 2024, 53 (1), 16–29; https://doi.org/10.1007/s11664-023-10766-3.Search in Google Scholar
3. Singh, R. P.; Alegaonkar, P. S.; Devi, C.; Yogesh, G. K.; Yadav, K. Mater. Today Commun. 2024, 40, 109671; https://doi.org/10.1016/j.mtcomm.2024.109671.Search in Google Scholar
4. Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Water Res. 2010, 44, 2997–3027; https://doi.org/10.1016/j.watres.2010.02.039.Search in Google Scholar PubMed
5. Lo, M. K.; Lee, S. Y.; Chang, K. S. J. Phys. Chem. C 2015, 119 (9), 5218–5224; https://doi.org/10.1021/acs.jpcc.5b00282.Search in Google Scholar
6. Kaid, M. M.; Elbanna, O.; El-Hakam, S. A.; El-Kaderi, H. M.; Ibrahim, A. A. J. Photochem. Photobiol. A: Chem. 2022, 430, 114001; https://doi.org/10.1016/j.jphotochem.2022.114001.Search in Google Scholar
7. Dong, S.; Feng, J.; Fan, M.; Pi, Y.; Hu, L.; Han, X.; Liu, M.; Sun, J.; Sun, J. RSC Adv. 2015, 5 (19), 14610–14630; https://doi.org/10.1039/c4ra13734e.Search in Google Scholar
8. AlMohamadi, H.; Awad, S. A.; Sharma, A. K.; Fayzullaev, N.; Távara-Aponte, A.; Chiguala-Contreras, L.; Amari, A.; Rodriguez-Benites, C.; Tahoon, M. A.; Esmaeili, H. Catalysts 2024, 14 (7), 420; https://doi.org/10.3390/catal14070420.Search in Google Scholar
9. Ghamarpoor, R.; Fallah, A.; Jamshidi, M. ACS Omega 2024, 9 (24), 25457–25492; https://doi.org/10.1021/acsomega.3c08717.Search in Google Scholar PubMed PubMed Central
10. Muhammad, F.; Arulanandam, J. C. Z. Phys. Chem. 2025, 239, 839–861; https://doi.org/10.1515/zpch-2024-0780.Search in Google Scholar
11. Lee, H. U.; LeeS, C.; Won, J.; Son, B. C.; Choi, S.; Kim, Y.; Park, S. Y.; Kim, H. .S.; Lee, Y. C.; Lee, J. Sci. Rep. 2015, 5 (1), 8691; https://doi.org/10.1038/srep08691.Search in Google Scholar PubMed PubMed Central
12. Njema, G. G.; Ouma, R. B. O.; Kibet, J. K. J. Renew. Energy. 2024 (1), 2329261.10.1155/2024/2329261Search in Google Scholar
13. Yang, H.; Mu, J.; Wang, J.; Li, F.; Che, H.; Huang, Z.; Wang, Y.; Guo, Z.; Ren, L. Colloids Surf. A 2023, 676, 132247; https://doi.org/10.1016/j.colsurfa.2023.132247.Search in Google Scholar
14. Agu, S. O.; Government, R. M. JASEM 2024, 28 (6), 1653–1669; https://doi.org/10.4314/jasem.v28i6.3.Search in Google Scholar
15. Zafar, H. K.; Zainab, S.; Masood, M.; Sohail, M.; Shah, S. S. A.; Karim, M. R.; O’Mullane, A.; (Ken) Ostrikov, K.; Will, G.; Wahab, Md.A. Chem. Rec. 2024, 24 (1), e202300161.Search in Google Scholar
16. Girirajan, M.; Bojarajan, A. K.; Pulidindi, I. N.; Hui, K. N.; Sangaraju, S. Coordination Chem. Rev. 2024, 518, 216080; https://doi.org/10.1016/j.ccr.2024.216080.Search in Google Scholar
17. Aadil, M.; Mahmood, M.; Warsi, M. F.; Alsafari, I. A.; Zulfiqar, S.; Shahid, M. Flat Chem. 2021, 30, 100316; https://doi.org/10.1016/j.flatc.2021.100316.Search in Google Scholar
18. Hao, C., Yang, B., Wen, F., Xiang, J., Li, L., Wang, W., Zeng, Z., Xu, B., Zhao, Z., Liu, Z., TianY. Adv. Mater., 2016, 28 (16), (3194-3201, https://doi.org/10.1002/adma.201505730.Search in Google Scholar PubMed
19. Shaheen, N.; Aadil, M.; Zulfiqar, S.; Sabeeh, H.; Agboola, P.; Warsi, M. F.; Aboud, M. F. A.; Shakir, I. Ceram. Int. 2021, 47 (4), 5273–5285; https://doi.org/10.1016/j.ceramint.2020.10.108.Search in Google Scholar
20. Kumar, R.; Joanni, E.; Sahoo, S.; Shim, J. -J.; Wai Kian Tan, W. T.; Matsuda, A.; Singh, R. K. Carbon 2022, 193, 298–338; https://doi.org/10.1016/j.carbon.2022.03.023.Search in Google Scholar
21. Prasannadevi, R.; Vigneshwaran, J.; Suthakaran, S.; Jose, S. P.; Dhanapandian, S.; Krishnakumar, N. Curr. Appl. Phys. 2022, 43, 15–28; https://doi.org/10.1016/j.cap.2022.07.009.Search in Google Scholar
22. Baby, S. P. G.; Tripathi, A. M.; Kushvaha, S. S.; Swaminathan, S.; Ragavendran, V.; Annaraj, J.; Mayandi, J. Z. Phys. Chem. 2025, 239, 1085–1100.Search in Google Scholar
23. Gadore, V.; Mishra, S. M.; Singh, A. K.; Ahmaruzzaman, M. RSC Adv. 2024, 14, 3447–3472; https://doi.org/10.1039/d3ra08323c.Search in Google Scholar PubMed PubMed Central
24. Muduli, S. K.; Varrla, E.; Xu, Y.; Kulkarni, S. A.; Katre, A.; Chakraborty, S.; Chen, S.; Sum, T. C.; Xu, R.; Mathews, N.. J. Mater. Chem. A 2017, 5 (47), 24874–24879; https://doi.org/10.1039/c7ta04889k.Search in Google Scholar
25. Mishra, R. K.; Sarkar, J.; Chianella, I.; Goel, S.; Nezhad, H. Y. Next Mater. 2024, 4, 100217; https://doi.org/10.1016/j.nxmate.2024.100217.Search in Google Scholar
26. Moradian, S.; Badiei, A.; Ziarani, G. M.; Mohajer, F.; Varma, R. S.; Iravani, S. Environ. Res. 2023, 237, 116910.10.1016/j.envres.2023.116910Search in Google Scholar PubMed
27. Wen, M.; Liu, D.; Kang, Y.; Wang, J.; Huang, H.; Li, J.; Chu, P. K.; Yu, X. F. Mater. Horiz. 2019, 6 (1), 176–181; https://doi.org/10.1039/c8mh00708j.Search in Google Scholar
28. Li, P.; Lu, J.; Cui, H.; Ruan, S.; Zeng, Y. -J. Mater. Adv. 2021, 2, 2483–2509; https://doi.org/10.1039/d0ma01016b.Search in Google Scholar
29. Tahir, M. B.; Fatima, N.; Fatima, U.; Sagir, M. Inorg. Chem. Commun. 2021, 124, 108242; https://doi.org/10.1016/j.inoche.2020.108242.Search in Google Scholar
30. Zhang, G.; Chen, D.; Lu, J. Sep. Purif. Technol. 2023, 307, 122833; https://doi.org/10.1016/j.seppur.2022.122833.Search in Google Scholar
31. Liu, H.; Peng, Z.; Hu, M.; Xu, X.; Lou, S.; Yan, S. Catalysts 2022, 12, 1403; https://doi.org/10.3390/catal12111403.Search in Google Scholar
32. Yin, H.; Kim, H.; Choi, J.; Yip, A. C. K. Chem. Eng. J. 2015, 278, 293–300; https://doi.org/10.1016/j.cej.2014.08.075.Search in Google Scholar
33. Abdelhamid, H. N. Biointerface Res. Appl. Chem. 2021, 11 (1), 8283–8297.10.33263/BRIAC111.82838297Search in Google Scholar
34. Wang, L.; Xu, Q.; Xu, J.; Weng, J. RSC Adv. 2016, 6, 69033–69039; https://doi.org/10.1039/c6ra13646j.Search in Google Scholar
35. Wang, S.; Luo, L.; Wu, A.; Wang, D.; Wang, L.; Jiao, Y.; Tian, C. Coord. Chem. Rev. 2024, 498, 215464; https://doi.org/10.1016/j.ccr.2023.215464.Search in Google Scholar
36. Zhao, Y.; Tong, L.; Li, Z.; Yang, N.; Fu, H.; Wu, L.; Cui, H.; Zhou, W.; Wang, J.; Wang, H.; Chu, P. K.; Yu, X. F. Chem. Mater. 2017, 29 (17), 7131–7139; https://doi.org/10.1021/acs.chemmater.7b01106.Search in Google Scholar
37. Ouyang, J.; Deng, Y.; Chen, W.; Xu, Q.; Wang, L.; Liu, Z.; Tang, F.; Deng, L.; Liu, Y. N. J. Mater. Chem. B 2018, 6 (14), 2057–2064; https://doi.org/10.1039/c8tb00371h.Search in Google Scholar PubMed
38. Chakraborty, A.; Islam, D. A.; Acharya, H. J. Solid State Chem. 2019, 269, 566–574; https://doi.org/10.1016/j.jssc.2018.10.036.Search in Google Scholar
39. Zhang, Z.; Li, S.; Qiao, D.; Hu, N.; Gu, Y.; Deng, Q.; Wang, S. ACS Appl. Mater. Interfaces 2021, 13 (37), 43855–43867; https://doi.org/10.1021/acsami.1c04001.Search in Google Scholar PubMed
40. Yang, X.; Qiu, L.; Luo, X. RSC Adv. 2018, 8 (9), 4890–4894; https://doi.org/10.1039/c7ra13351k.Search in Google Scholar PubMed PubMed Central
41. Zhang, X.; Li, Z.; Wang, Y.; Zhang, S.; Zang, X.; Wang, C.; Wang, Z. J. Chromatogr. A. 2023, 1708, 464339; https://doi.org/10.1016/j.chroma.2023.464339.Search in Google Scholar PubMed
42. Song, S. J.; Raja, I. S.; Lee, Y. B.; Kang, M. S.; Seo, H. J.; Lee, H. U.; Han, D. W. Biomater. Res. 2019, 23 (1), 23; https://doi.org/10.1186/s40824-019-0174-x.Search in Google Scholar PubMed PubMed Central
43. Li, J.; Chang, H.; Li, Y.; Li, Q.; Shen, K.; Yi, H.; Zhang, J. RSC Adv. 2020, 10 (6), 3380–3390; https://doi.org/10.1039/c9ra10548d.Search in Google Scholar PubMed PubMed Central
44. Xu, M.; Feng, Y.; Chen, B.; Meng, R.; Xia, M.; Gu, F.; Yang, D.; Zhang, C.; Yang, J. Nano-micro Lett. 2021, 13, 1–13.10.1007/s40820-020-00570-7Search in Google Scholar PubMed PubMed Central
45. Li, Q.; Wang, R.; Xue, J.; Wang, R.; Zhang, S.; Kang, H.; Wang, Y.; Zhu, H.; Lv, C. ACS Appl. Mater. Interfaces 2024; https://doi.org/10.1021/acsami.4c05298.Search in Google Scholar PubMed
46. Zhang, S.; Yang, Q.; Wang, C.; Luo, X.; Kim, J.; Wang, Z.; Yamauchi, Y. Adv. Sci. 2018, 5 (12), 1801116; https://doi.org/10.1002/advs.201801116.Search in Google Scholar PubMed PubMed Central
47. Mohammad, A.; Khan, M. E.; Karim, M. R.; Cho, M. H. Appl. Surf. Sci. 2019, 495, 143432; https://doi.org/10.1016/j.apsusc.2019.07.174.Search in Google Scholar
48. Liu, W.; He, T.; Wang, Y.; Ning, G.; Xu, Z.; Chen, X.; Hu, X.; Wu, Y.; Zhao, Y. Sci. Rep. 2020, 10 (1), 11903; https://doi.org/10.1038/s41598-020-68517-x.Search in Google Scholar PubMed PubMed Central
49. Razali, N. S.; Abdulhameed, A. S.; Jawad, A. H.; Alothman, Z. A.; Yousef, T. A.; Al-Duaij, O. K.; Alsaiari, N. S. Molecules 2022, 27 (20), 6947; https://doi.org/10.3390/molecules27206947.Search in Google Scholar PubMed PubMed Central
50. Jing, H. P.; Wang, C. C.; Zhang, Y. W.; Wang, P.; Li, R. RSC Adv. 2014, 4 (97), 54454–54462; https://doi.org/10.1039/c4ra08820d.Search in Google Scholar
51. Xie, L.; Du, T.; Wang, J.; Ma, Y.; Ni, Y.; Liu, Z.; Zhang, L.; Yang, C.; Wang, J. Chem. Eng. J. 2021, 426, 130617; https://doi.org/10.1016/j.cej.2021.130617.Search in Google Scholar
52. Shen, Z.; Sun, S.; Wang, W.; Liu, J.; Liu, Z.; Jimmy, C. Y. J. Mater. Chem. A 2015, 3 (7), 3285–3288; https://doi.org/10.1039/c4ta06871h.Search in Google Scholar
53. Qiao, J.; Kong, X.; Hu, Z. X.; Yang, F.; Ji, W. Nat. Commun. 2014, 5 (1), 4475; https://doi.org/10.1038/ncomms5475.Search in Google Scholar PubMed PubMed Central
54. Jia, Q.; Kong, X. H.; Qiao, J. S.; Ji, W. Sci. China Phys. Mech. Astron. 2016, 59, 1–7.10.1007/s11433-016-0135-5Search in Google Scholar
55. Wang, F.; Ng, W. K. H.; Yu, J. C.; Zhu, H.; Li, C.; Zhang, L.; Liu, Z.; Li, Q. Appl. Catal. B Environ. Energy 2012, 111, 409–414.10.1016/j.apcatb.2011.10.028Search in Google Scholar
56. Chen, S.; Hu, Y.; Meng, S.; Fu, X. Appl. Catal. B. 2014, 150, 564–573.10.1016/j.apcatb.2013.12.053Search in Google Scholar
57. Faraji, A.; Mehrdadi, N.; Mahmoodi, N. M.; Baghdadi, M.; Pardakhti, A. J. Mol. Struct. 2021, 1223, 129028; https://doi.org/10.1016/j.molstruc.2020.129028.Search in Google Scholar
58. Wu, T.; Ma, Z.; He, Y.; Wu, X.; Tang, B.; Yu, Z.; Wu, G.; Chen, S.; Bao, N. Angew. Chem., Int. Ed. 2021, 60 (18), 10366–10374; https://doi.org/10.1002/anie.202101648.Search in Google Scholar PubMed
59. Yan, C.; Zhao, H.; Li, J.; Jin, H.; Liu, L.; Wu, W.; Wang, J.; Lei, Y.; Wang, S. Small 2020, 16 (11), 1907141; https://doi.org/10.1002/smll.201907141.Search in Google Scholar PubMed
60. Zheng, W.; Liu, M.; Lee, L. Y. S. ACS Catal. 2019, 10 (1), 81–92; https://doi.org/10.1021/acscatal.9b03790.Search in Google Scholar
61. Namsheer, K.; Sanyal, G.; Pramoda, K.; Chakraborty, B.; Cho, J. S.; Jeong, S. M.; Rout, C. S. Adv. Sustain. Syst. 2024, 8 (8), 2300572.Search in Google Scholar
62. Xia, H.; Zhang, J.; Yang, Z.; Guo, S.; Guo, S.; Xu, Q. Nano-micro Lett. 2017, 9, 1–11.10.1007/s40820-017-0144-6Search in Google Scholar PubMed PubMed Central
63. Perdana, M. Y.; Johan, B. A.; Abdallah, M.; Hossain, M. E.; Aziz, M. A.; Baroud, T. N.; Drmosh, Q. A. Chem. Rec. 2024, 24 (5), e202400007; https://doi.org/10.1002/tcr.202400007.Search in Google Scholar PubMed
64. Chiam, S. L.; Lim, H. N.; Hafiz, S. M.; Pandikumar, A.; Huang, N. M. Sci. Rep. 2018, 8 (1), 1–7.10.1038/s41598-018-21572-xSearch in Google Scholar PubMed PubMed Central
65. Kumar, N.; Kim, S. B.; Lee, S. Y.; Park, S. J. Nanomaterials 2022, 12 (20), 3708; https://doi.org/10.3390/nano12203708.Search in Google Scholar PubMed PubMed Central
66. Allison, A.; Andreas, H. A. J. Power Sources 2019, 426, 93–96; https://doi.org/10.1016/j.jpowsour.2019.04.029.Search in Google Scholar
67. Cho, S.; Chen, C. F.; Mukherjee, P. P. J. Electrochem. Soc. 2015, 162 (7), A1202; https://doi.org/10.1149/2.0331507jes.Search in Google Scholar
68. Shin, H.; Zhang, J.; Lu, W. J. Electrochem. Soc. 2019, 166 (12), A2673; https://doi.org/10.1149/2.1421912jes.Search in Google Scholar
69. Muduli, S. K.; Varrla, E.; Kulkarni, S. A.; Han, G.; Thirumal, K.; Lev, O.; Mhaisalkar, S.; Mathews, N. J. Power Sources 2017, 371, 156–161; https://doi.org/10.1016/j.jpowsour.2017.10.018.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zpch-2025-0022).
© 2025 Walter de Gruyter GmbH, Berlin/Boston