Home Synergistic effect of in situ growth of highly porous ZIF-8 on black phosphorus nanosheets for enhanced photocatalytic and electrochemical performance
Article
Licensed
Unlicensed Requires Authentication

Synergistic effect of in situ growth of highly porous ZIF-8 on black phosphorus nanosheets for enhanced photocatalytic and electrochemical performance

  • Shiloh Jessie Francisca Francis Aser Ravichandran , Raja Viswanathan ORCID logo , Sujin P. Jose , Jeyanthinath Mayandi ORCID logo , Dhanapandian Swaminathan ORCID logo and Krishnakumar Narendran ORCID logo EMAIL logo
Published/Copyright: October 29, 2025

Abstract

The present study examines the synthesis of black phosphorus nanosheets (BPNs) through the liquid-phase exfoliation of bulk black phosphorus, subsequently leading to the in situ growth of zeolitic imidazolate frameworks (ZIF-8) on PVP-stabilized BPNs. The synthesized nanocomposites were analyzed using various analytical techniques, confirming that ZIF-8 is effectively attached to the surface of BPNs, resulting in improved dispersion, a large surface area and an appropriate pore size distribution. Incorporating ZIF-8 into BPNs significantly improves the photocatalytic performance in the degradation of methylene blue (MB) and rhodamine 6G (R6G) dyes. The degradation efficiency is 88 % for both MB and R6G within 90 min of UV light irradiation, attributed to the enhanced capture of electrons and the reduction of photogenerated electron-hole pair recombination potential. Additionally, the electrochemical capacitance of the uniquely designed electrode materials is analyzed using electrochemical techniques. BPNs/ZIF-8 electrode exhibits a 40 % increase in capacity witha specific capacitance of 145 Fg−1 compared to BPNs, which show a specific capacitance of 98 Fg−1 at apotential scan rate of 10mVs -1. Moreover, the BPNs/ZIF-8 electrode material has excellent cyclic stability with acapacitive retention of 85 % after 9,500 cycles. The results indicate that this material holds considerable promise for applications in photocatalysis and supercapacitors, opening avenues for progress in these fields.


Corresponding author: Krishnakumar Narendran, Department of Physics, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India; and School of Physics, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India, E-mail:

Acknowledgements

The authors, F. A. Shiloh Jessie Francisca and N. Krishnakumar, gratefully acknowledge the Department of Science and Technology and Ministry of Science and Technology, Government of India, for the financial assistance provided under the DST-Inspire Fellowship (Fellow Code: IF190788). The authors V. Raja and Sujin P. Jose, sincerely acknowledge the funding provided by UGC towards UGC Dr. DS Kothari Post-Doctoral Fellowship (No.F.4-2/2006 (BSR)/OT/20–21/0008). The views expressed herein do not necessarily reflect the official opinion of the donors.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: F. A. Shiloh Jessie Francisa: writing – original draft, methodology and investigation. V. Raja: writing, data curation, investigation, and formal analysis. Sujin P Jose: formal analysis, and resource. J. Mayandi: resource, formal analysis and validation. S. Dhanapandian: editing and review. N. Krishnakumar: conceptualization, writing – review and editing, and supervision. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The data that has been used is confidential.

References

1. Lee, K. C.; Hsiao, Y. S.; Sung, M. Y.; Chen, Y. L.; Wu, N. J.; Huang, J. H.; Cho, E. C.; Weng, H. C.; Hsu, S. C. J. Environ. Chem. Eng. 2023, 11 (5), 110762; https://doi.org/10.1016/j.jece.2023.110762.Search in Google Scholar

2. Narwade, V. N.; Rahane, G. K.; Bogle, K. A.; Tsai, M. L.; Rondiya, S. R.; Shirsat, M. D. J. Electron. Mater. 2024, 53 (1), 16–29; https://doi.org/10.1007/s11664-023-10766-3.Search in Google Scholar

3. Singh, R. P.; Alegaonkar, P. S.; Devi, C.; Yogesh, G. K.; Yadav, K. Mater. Today Commun. 2024, 40, 109671; https://doi.org/10.1016/j.mtcomm.2024.109671.Search in Google Scholar

4. Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Water Res. 2010, 44, 2997–3027; https://doi.org/10.1016/j.watres.2010.02.039.Search in Google Scholar PubMed

5. Lo, M. K.; Lee, S. Y.; Chang, K. S. J. Phys. Chem. C 2015, 119 (9), 5218–5224; https://doi.org/10.1021/acs.jpcc.5b00282.Search in Google Scholar

6. Kaid, M. M.; Elbanna, O.; El-Hakam, S. A.; El-Kaderi, H. M.; Ibrahim, A. A. J. Photochem. Photobiol. A: Chem. 2022, 430, 114001; https://doi.org/10.1016/j.jphotochem.2022.114001.Search in Google Scholar

7. Dong, S.; Feng, J.; Fan, M.; Pi, Y.; Hu, L.; Han, X.; Liu, M.; Sun, J.; Sun, J. RSC Adv. 2015, 5 (19), 14610–14630; https://doi.org/10.1039/c4ra13734e.Search in Google Scholar

8. AlMohamadi, H.; Awad, S. A.; Sharma, A. K.; Fayzullaev, N.; Távara-Aponte, A.; Chiguala-Contreras, L.; Amari, A.; Rodriguez-Benites, C.; Tahoon, M. A.; Esmaeili, H. Catalysts 2024, 14 (7), 420; https://doi.org/10.3390/catal14070420.Search in Google Scholar

9. Ghamarpoor, R.; Fallah, A.; Jamshidi, M. ACS Omega 2024, 9 (24), 25457–25492; https://doi.org/10.1021/acsomega.3c08717.Search in Google Scholar PubMed PubMed Central

10. Muhammad, F.; Arulanandam, J. C. Z. Phys. Chem. 2025, 239, 839–861; https://doi.org/10.1515/zpch-2024-0780.Search in Google Scholar

11. Lee, H. U.; LeeS, C.; Won, J.; Son, B. C.; Choi, S.; Kim, Y.; Park, S. Y.; Kim, H. .S.; Lee, Y. C.; Lee, J. Sci. Rep. 2015, 5 (1), 8691; https://doi.org/10.1038/srep08691.Search in Google Scholar PubMed PubMed Central

12. Njema, G. G.; Ouma, R. B. O.; Kibet, J. K. J. Renew. Energy. 2024 (1), 2329261.10.1155/2024/2329261Search in Google Scholar

13. Yang, H.; Mu, J.; Wang, J.; Li, F.; Che, H.; Huang, Z.; Wang, Y.; Guo, Z.; Ren, L. Colloids Surf. A 2023, 676, 132247; https://doi.org/10.1016/j.colsurfa.2023.132247.Search in Google Scholar

14. Agu, S. O.; Government, R. M. JASEM 2024, 28 (6), 1653–1669; https://doi.org/10.4314/jasem.v28i6.3.Search in Google Scholar

15. Zafar, H. K.; Zainab, S.; Masood, M.; Sohail, M.; Shah, S. S. A.; Karim, M. R.; O’Mullane, A.; (Ken) Ostrikov, K.; Will, G.; Wahab, Md.A. Chem. Rec. 2024, 24 (1), e202300161.Search in Google Scholar

16. Girirajan, M.; Bojarajan, A. K.; Pulidindi, I. N.; Hui, K. N.; Sangaraju, S. Coordination Chem. Rev. 2024, 518, 216080; https://doi.org/10.1016/j.ccr.2024.216080.Search in Google Scholar

17. Aadil, M.; Mahmood, M.; Warsi, M. F.; Alsafari, I. A.; Zulfiqar, S.; Shahid, M. Flat Chem. 2021, 30, 100316; https://doi.org/10.1016/j.flatc.2021.100316.Search in Google Scholar

18. Hao, C., Yang, B., Wen, F., Xiang, J., Li, L., Wang, W., Zeng, Z., Xu, B., Zhao, Z., Liu, Z., TianY. Adv. Mater., 2016, 28 (16), (3194-3201, https://doi.org/10.1002/adma.201505730.Search in Google Scholar PubMed

19. Shaheen, N.; Aadil, M.; Zulfiqar, S.; Sabeeh, H.; Agboola, P.; Warsi, M. F.; Aboud, M. F. A.; Shakir, I. Ceram. Int. 2021, 47 (4), 5273–5285; https://doi.org/10.1016/j.ceramint.2020.10.108.Search in Google Scholar

20. Kumar, R.; Joanni, E.; Sahoo, S.; Shim, J. -J.; Wai Kian Tan, W. T.; Matsuda, A.; Singh, R. K. Carbon 2022, 193, 298–338; https://doi.org/10.1016/j.carbon.2022.03.023.Search in Google Scholar

21. Prasannadevi, R.; Vigneshwaran, J.; Suthakaran, S.; Jose, S. P.; Dhanapandian, S.; Krishnakumar, N. Curr. Appl. Phys. 2022, 43, 15–28; https://doi.org/10.1016/j.cap.2022.07.009.Search in Google Scholar

22. Baby, S. P. G.; Tripathi, A. M.; Kushvaha, S. S.; Swaminathan, S.; Ragavendran, V.; Annaraj, J.; Mayandi, J. Z. Phys. Chem. 2025, 239, 1085–1100.Search in Google Scholar

23. Gadore, V.; Mishra, S. M.; Singh, A. K.; Ahmaruzzaman, M. RSC Adv. 2024, 14, 3447–3472; https://doi.org/10.1039/d3ra08323c.Search in Google Scholar PubMed PubMed Central

24. Muduli, S. K.; Varrla, E.; Xu, Y.; Kulkarni, S. A.; Katre, A.; Chakraborty, S.; Chen, S.; Sum, T. C.; Xu, R.; Mathews, N.. J. Mater. Chem. A 2017, 5 (47), 24874–24879; https://doi.org/10.1039/c7ta04889k.Search in Google Scholar

25. Mishra, R. K.; Sarkar, J.; Chianella, I.; Goel, S.; Nezhad, H. Y. Next Mater. 2024, 4, 100217; https://doi.org/10.1016/j.nxmate.2024.100217.Search in Google Scholar

26. Moradian, S.; Badiei, A.; Ziarani, G. M.; Mohajer, F.; Varma, R. S.; Iravani, S. Environ. Res. 2023, 237, 116910.10.1016/j.envres.2023.116910Search in Google Scholar PubMed

27. Wen, M.; Liu, D.; Kang, Y.; Wang, J.; Huang, H.; Li, J.; Chu, P. K.; Yu, X. F. Mater. Horiz. 2019, 6 (1), 176–181; https://doi.org/10.1039/c8mh00708j.Search in Google Scholar

28. Li, P.; Lu, J.; Cui, H.; Ruan, S.; Zeng, Y. -J. Mater. Adv. 2021, 2, 2483–2509; https://doi.org/10.1039/d0ma01016b.Search in Google Scholar

29. Tahir, M. B.; Fatima, N.; Fatima, U.; Sagir, M. Inorg. Chem. Commun. 2021, 124, 108242; https://doi.org/10.1016/j.inoche.2020.108242.Search in Google Scholar

30. Zhang, G.; Chen, D.; Lu, J. Sep. Purif. Technol. 2023, 307, 122833; https://doi.org/10.1016/j.seppur.2022.122833.Search in Google Scholar

31. Liu, H.; Peng, Z.; Hu, M.; Xu, X.; Lou, S.; Yan, S. Catalysts 2022, 12, 1403; https://doi.org/10.3390/catal12111403.Search in Google Scholar

32. Yin, H.; Kim, H.; Choi, J.; Yip, A. C. K. Chem. Eng. J. 2015, 278, 293–300; https://doi.org/10.1016/j.cej.2014.08.075.Search in Google Scholar

33. Abdelhamid, H. N. Biointerface Res. Appl. Chem. 2021, 11 (1), 8283–8297.10.33263/BRIAC111.82838297Search in Google Scholar

34. Wang, L.; Xu, Q.; Xu, J.; Weng, J. RSC Adv. 2016, 6, 69033–69039; https://doi.org/10.1039/c6ra13646j.Search in Google Scholar

35. Wang, S.; Luo, L.; Wu, A.; Wang, D.; Wang, L.; Jiao, Y.; Tian, C. Coord. Chem. Rev. 2024, 498, 215464; https://doi.org/10.1016/j.ccr.2023.215464.Search in Google Scholar

36. Zhao, Y.; Tong, L.; Li, Z.; Yang, N.; Fu, H.; Wu, L.; Cui, H.; Zhou, W.; Wang, J.; Wang, H.; Chu, P. K.; Yu, X. F. Chem. Mater. 2017, 29 (17), 7131–7139; https://doi.org/10.1021/acs.chemmater.7b01106.Search in Google Scholar

37. Ouyang, J.; Deng, Y.; Chen, W.; Xu, Q.; Wang, L.; Liu, Z.; Tang, F.; Deng, L.; Liu, Y. N. J. Mater. Chem. B 2018, 6 (14), 2057–2064; https://doi.org/10.1039/c8tb00371h.Search in Google Scholar PubMed

38. Chakraborty, A.; Islam, D. A.; Acharya, H. J. Solid State Chem. 2019, 269, 566–574; https://doi.org/10.1016/j.jssc.2018.10.036.Search in Google Scholar

39. Zhang, Z.; Li, S.; Qiao, D.; Hu, N.; Gu, Y.; Deng, Q.; Wang, S. ACS Appl. Mater. Interfaces 2021, 13 (37), 43855–43867; https://doi.org/10.1021/acsami.1c04001.Search in Google Scholar PubMed

40. Yang, X.; Qiu, L.; Luo, X. RSC Adv. 2018, 8 (9), 4890–4894; https://doi.org/10.1039/c7ra13351k.Search in Google Scholar PubMed PubMed Central

41. Zhang, X.; Li, Z.; Wang, Y.; Zhang, S.; Zang, X.; Wang, C.; Wang, Z. J. Chromatogr. A. 2023, 1708, 464339; https://doi.org/10.1016/j.chroma.2023.464339.Search in Google Scholar PubMed

42. Song, S. J.; Raja, I. S.; Lee, Y. B.; Kang, M. S.; Seo, H. J.; Lee, H. U.; Han, D. W. Biomater. Res. 2019, 23 (1), 23; https://doi.org/10.1186/s40824-019-0174-x.Search in Google Scholar PubMed PubMed Central

43. Li, J.; Chang, H.; Li, Y.; Li, Q.; Shen, K.; Yi, H.; Zhang, J. RSC Adv. 2020, 10 (6), 3380–3390; https://doi.org/10.1039/c9ra10548d.Search in Google Scholar PubMed PubMed Central

44. Xu, M.; Feng, Y.; Chen, B.; Meng, R.; Xia, M.; Gu, F.; Yang, D.; Zhang, C.; Yang, J. Nano-micro Lett. 2021, 13, 1–13.10.1007/s40820-020-00570-7Search in Google Scholar PubMed PubMed Central

45. Li, Q.; Wang, R.; Xue, J.; Wang, R.; Zhang, S.; Kang, H.; Wang, Y.; Zhu, H.; Lv, C. ACS Appl. Mater. Interfaces 2024; https://doi.org/10.1021/acsami.4c05298.Search in Google Scholar PubMed

46. Zhang, S.; Yang, Q.; Wang, C.; Luo, X.; Kim, J.; Wang, Z.; Yamauchi, Y. Adv. Sci. 2018, 5 (12), 1801116; https://doi.org/10.1002/advs.201801116.Search in Google Scholar PubMed PubMed Central

47. Mohammad, A.; Khan, M. E.; Karim, M. R.; Cho, M. H. Appl. Surf. Sci. 2019, 495, 143432; https://doi.org/10.1016/j.apsusc.2019.07.174.Search in Google Scholar

48. Liu, W.; He, T.; Wang, Y.; Ning, G.; Xu, Z.; Chen, X.; Hu, X.; Wu, Y.; Zhao, Y. Sci. Rep. 2020, 10 (1), 11903; https://doi.org/10.1038/s41598-020-68517-x.Search in Google Scholar PubMed PubMed Central

49. Razali, N. S.; Abdulhameed, A. S.; Jawad, A. H.; Alothman, Z. A.; Yousef, T. A.; Al-Duaij, O. K.; Alsaiari, N. S. Molecules 2022, 27 (20), 6947; https://doi.org/10.3390/molecules27206947.Search in Google Scholar PubMed PubMed Central

50. Jing, H. P.; Wang, C. C.; Zhang, Y. W.; Wang, P.; Li, R. RSC Adv. 2014, 4 (97), 54454–54462; https://doi.org/10.1039/c4ra08820d.Search in Google Scholar

51. Xie, L.; Du, T.; Wang, J.; Ma, Y.; Ni, Y.; Liu, Z.; Zhang, L.; Yang, C.; Wang, J. Chem. Eng. J. 2021, 426, 130617; https://doi.org/10.1016/j.cej.2021.130617.Search in Google Scholar

52. Shen, Z.; Sun, S.; Wang, W.; Liu, J.; Liu, Z.; Jimmy, C. Y. J. Mater. Chem. A 2015, 3 (7), 3285–3288; https://doi.org/10.1039/c4ta06871h.Search in Google Scholar

53. Qiao, J.; Kong, X.; Hu, Z. X.; Yang, F.; Ji, W. Nat. Commun. 2014, 5 (1), 4475; https://doi.org/10.1038/ncomms5475.Search in Google Scholar PubMed PubMed Central

54. Jia, Q.; Kong, X. H.; Qiao, J. S.; Ji, W. Sci. China Phys. Mech. Astron. 2016, 59, 1–7.10.1007/s11433-016-0135-5Search in Google Scholar

55. Wang, F.; Ng, W. K. H.; Yu, J. C.; Zhu, H.; Li, C.; Zhang, L.; Liu, Z.; Li, Q. Appl. Catal. B Environ. Energy 2012, 111, 409–414.10.1016/j.apcatb.2011.10.028Search in Google Scholar

56. Chen, S.; Hu, Y.; Meng, S.; Fu, X. Appl. Catal. B. 2014, 150, 564–573.10.1016/j.apcatb.2013.12.053Search in Google Scholar

57. Faraji, A.; Mehrdadi, N.; Mahmoodi, N. M.; Baghdadi, M.; Pardakhti, A. J. Mol. Struct. 2021, 1223, 129028; https://doi.org/10.1016/j.molstruc.2020.129028.Search in Google Scholar

58. Wu, T.; Ma, Z.; He, Y.; Wu, X.; Tang, B.; Yu, Z.; Wu, G.; Chen, S.; Bao, N. Angew. Chem., Int. Ed. 2021, 60 (18), 10366–10374; https://doi.org/10.1002/anie.202101648.Search in Google Scholar PubMed

59. Yan, C.; Zhao, H.; Li, J.; Jin, H.; Liu, L.; Wu, W.; Wang, J.; Lei, Y.; Wang, S. Small 2020, 16 (11), 1907141; https://doi.org/10.1002/smll.201907141.Search in Google Scholar PubMed

60. Zheng, W.; Liu, M.; Lee, L. Y. S. ACS Catal. 2019, 10 (1), 81–92; https://doi.org/10.1021/acscatal.9b03790.Search in Google Scholar

61. Namsheer, K.; Sanyal, G.; Pramoda, K.; Chakraborty, B.; Cho, J. S.; Jeong, S. M.; Rout, C. S. Adv. Sustain. Syst. 2024, 8 (8), 2300572.Search in Google Scholar

62. Xia, H.; Zhang, J.; Yang, Z.; Guo, S.; Guo, S.; Xu, Q. Nano-micro Lett. 2017, 9, 1–11.10.1007/s40820-017-0144-6Search in Google Scholar PubMed PubMed Central

63. Perdana, M. Y.; Johan, B. A.; Abdallah, M.; Hossain, M. E.; Aziz, M. A.; Baroud, T. N.; Drmosh, Q. A. Chem. Rec. 2024, 24 (5), e202400007; https://doi.org/10.1002/tcr.202400007.Search in Google Scholar PubMed

64. Chiam, S. L.; Lim, H. N.; Hafiz, S. M.; Pandikumar, A.; Huang, N. M. Sci. Rep. 2018, 8 (1), 1–7.10.1038/s41598-018-21572-xSearch in Google Scholar PubMed PubMed Central

65. Kumar, N.; Kim, S. B.; Lee, S. Y.; Park, S. J. Nanomaterials 2022, 12 (20), 3708; https://doi.org/10.3390/nano12203708.Search in Google Scholar PubMed PubMed Central

66. Allison, A.; Andreas, H. A. J. Power Sources 2019, 426, 93–96; https://doi.org/10.1016/j.jpowsour.2019.04.029.Search in Google Scholar

67. Cho, S.; Chen, C. F.; Mukherjee, P. P. J. Electrochem. Soc. 2015, 162 (7), A1202; https://doi.org/10.1149/2.0331507jes.Search in Google Scholar

68. Shin, H.; Zhang, J.; Lu, W. J. Electrochem. Soc. 2019, 166 (12), A2673; https://doi.org/10.1149/2.1421912jes.Search in Google Scholar

69. Muduli, S. K.; Varrla, E.; Kulkarni, S. A.; Han, G.; Thirumal, K.; Lev, O.; Mhaisalkar, S.; Mathews, N. J. Power Sources 2017, 371, 156–161; https://doi.org/10.1016/j.jpowsour.2017.10.018.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2025-0022).


Received: 2025-02-25
Accepted: 2025-09-09
Published Online: 2025-10-29

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2025-0022/pdf
Scroll to top button