Home Unlocking the potential of FeNbGe Half Heusler: stability, electronic, magnetic and thermodynamic properties
Article
Licensed
Unlicensed Requires Authentication

Unlocking the potential of FeNbGe Half Heusler: stability, electronic, magnetic and thermodynamic properties

  • Hannah Jeniffer Immanuel ORCID logo , Mahalakshmi Ponniah , Sudharsan Balasubramanian EMAIL logo , Punithavelan Nallamuthu , Saravanan Sundaram , Yordanos Abay Lema and M. Srinivasan
Published/Copyright: February 6, 2025

Abstract

In this paper, we investigate the electronic, magnetic, mechanical, dynamical, and thermodynamical properties of novel FeNbGe half Heusler alloy by first principle calculations. The alloy’s thermodynamic and dynamic stability were verified, and it was found feasible to synthesize experimentally. The calculated elastic constants prove the mechanical stability of the material. The malleable and ductile nature of the material was confirmed through Pugh’s and Poisson’s ratios. The electronic properties were calculated using the GGA and TB-mBJ exchange-correlation potentials. The band structure in the spin-down channel reflects metallic behaviour. In contrast, the spin-up channel shows non-metallic behaviour, which infers the half-metallic property of our half-Heusler alloy, which is a desirable property for spintronic materials. The alloy displayed an indirect band gap of 1.06 eV from GGA and 1.15 eV from TB-mBJ functionals. The Heusler alloy under study with 17 valence electrons, was found to be a Ferromagnetic alloy with a total magnetic moment of −1μ B . The half-metallicity retaining property was studied by imposing expansive volumetric strain. The small band gap, half-metallic property, and the ferromagnetic nature of our material suggest that it can be a suitable material for spintronics applications.


Corresponding author: Sudharsan Balasubramanian, Centre for Nonlinear and Complex Networks, SRM Institute of Science and Technology, Ramapuram, Chennai, 600 089, Tamil Nadu, India; and Centre for Research, Easwari Engineering College, Ramapuram, Chennai, 600 089, Tamil Nadu, India, E-mail:

Funding source: SRM IST, Ramapuram, Tamil Nadu, India

Award Identifier / Grant number: SRM/IST-RMP/RI/004

Acknowledgments

JBS would like to thank SRM IST, Ramapuram, India, for their financial support, vide number SRM/IST-RMP/RI/004.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: H.J.I. – Original analysis, original draft, study, consolidation of data; M.P. – Study, editing the original draft, consolidation of data; S.B. – Problem framing, investigation, editing draft, supervision, fund acquisition; P.N. – supervision, fund acquisition; S.N.– Editing draft and analysis: Y.A.L. – Editing draft and analysis; S.M. – Editing draft and supervision. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: Sudharsan Balasubramanian would like to thank SRM IST, Ramapuram, India, for their financial support, vide number SRM/IST-RMP/RI/004.

  7. Data availability: Not applicable.

References

1. Wei, J.; Yang, L.; Ma, Z.; Song, P.; Zhang, M.; Ma, J.; Yang, F.; Wang, X. Review of Current High-ZT Thermoelectric Materials. J. Mater. Sci. 2020, 55 (27), 12642–12704.10.1007/s10853-020-04949-0Search in Google Scholar

2. Devarajan, U.; Sivaprakash, P.; Venkateswaran, C.; Hariharan, P.; Kawamura, Y.; Sekine, C.; Arumugam, S. Induced Triplet Transitions by the Effect of Antiferromagnetic (Sm) Substitution and Investigations on Structural, Magnetic, Magnetocaloric Properties of Mn1-Xsmxcoge Heulser Alloys. J. Magn. Magn. Mater. 2021, 529, 167912; https://doi.org/10.1016/j.jmmm.2021.167912.Search in Google Scholar

3. Sivaprakash, P.; Arumugam, S.; Esakki Muthu, S.; Raj Kumar, D. M.; Saravanan, C.; Rama Rao, N. V.; Uwatoko, Y.; Thiyagarajan, R. Correlation of Magnetocaloric Effect Through Magnetic and Electrical Resistivity on Si Doped Ni–Mn–In Heusler Melt Spun Ribbon. Intermetallics 2021, 137, 107285; https://doi.org/10.1016/j.intermet.2021.107285.Search in Google Scholar

4. Sivaprakash, P.; Esakki Muthu, S.; Jerries Infanta, J.; Rajkumar, S.; Kim, I.; Arumugam, S. Investigation of Exchange Bias and Magnetoresistance in the Si Substituted Ni-Mn-In Ribbon Alloys. Mater. Sci. Eng.: B 2022, 286, 116067; https://doi.org/10.1016/j.mseb.2022.116067.Search in Google Scholar

5. Esakki Muthu, S.; Sivaprakash, P.; Thiyagarajan, R.; Saravanan, C.; Arumugam, S. Investigation of Magnetic Entropy Change and Critical Behavior Analysis of Cu-And Si-Doped Ni–Mn–Sn Heusler Alloys. J. Supercond. Novel Magn. 2020, 33, 3587–3595; https://doi.org/10.1007/s10948-020-05622-y.Search in Google Scholar

6. Rached, D.; Boumia, L.; Caid, M.; Rached, Y.; Belkacem, A. A. A.; Rached, H.; Merabet, M.; Benalia, S. The Half-Metallic Ferromagnetic and Thermoelectric Responses of the Potential Thermo-Spintronic Compounds Crtirhz (z: Al or si) qha. Indian J. Phys. 2024, 98 (5), 1645–1654; https://doi.org/10.1007/s12648-023-02936-0.Search in Google Scholar

7. Bouferrache, K.; Ghebouli, M. A.; Slimani, Y.; Ghebouli, B.; Fatmi, M.; Chihi, T.; Algethami, N.; Mouhammad, S. A.; Alomairy, S.; Elkenany, E. B. Structural Stability, Opto-Electronic, Magnetic and Thermoelectric Properties of Half-Metallic Ferromagnets Quaternary Heusler Alloys Cofexas (X=Mn, Cr and V). Solid State Commun. 2024, 377, 115366; https://doi.org/10.1016/j.ssc.2023.115366.Search in Google Scholar

8. Ghellab, T.; Charifi, Z.; Baaziz, H.; Latelli, N. Optoelectronics and Thermoelectric Performances in Cux (X=F, Cl, Br, and I). Z. Naturforsch. A 2024, 79 (3), 261–282. https://doi.org/10.1515/zna-2023-0237.Search in Google Scholar

9. Hirohata, A.; Lloyd, D. C. Heusler Alloys for Metal Spintronics. MRS Bull. 2022, 47 (6), 593–599; https://doi.org/10.1557/s43577-022-00350-1.Search in Google Scholar

10. Toual, Y.; Mouchou, S.; Rani, U.; Azouaoui, A.; Hourmatallah, A.; Masrour, R.; Rezzouk, A.; Bouslykhane, K.; Benzakour, N. Probing Electronic, Magnetic and Thermal Properties of Nimnsb Half-Heusler Alloy for Spintronics as an Environmentally Friendly Energy Resource: a Dft+ U and Monte Carlo Study. Mater. Today Commun. 2024, 38, 108064; https://doi.org/10.1016/j.mtcomm.2024.108064.Search in Google Scholar

11. Gurunani, B.; Ghosh, S.; Gupta, D. C. Comprehensive Investigation of Half Heusler Alloy: Unveiling Structural, Electronic, Magnetic, Mechanical, Thermodynamic, and Transport Properties. Intermetallics 2024, 170, 108311; https://doi.org/10.1016/j.intermet.2024.108311.Search in Google Scholar

12. Herald Milton, P.; Elangeeran, S.; Mabood Husain, F.; Vignesh, S.; Arangarajan, V. Investigation on Electrochemical Corrosion Behavior and Mechanical Properties of Fe-Nano Particles Produced by High-Energy Ball Milling Technique. Z. Phys. Chem. 2024, https://doi.org/10.1515/zpch-2023-0515.Search in Google Scholar

13. Kavu, K.; Sankaran, E. M.; Kumar Kaliamurthy, A.; Hasan, I.; Sahadevan, J.; Vignesh, S.; Suganthi, S. Estimation on Magnetic Entropy Change and Specific Heat Capacity through Phoenomological Model for Heusler Melt Spun Ribbon of Ni47mn40-Xsi Xin3 (X = 1, 2 and 3). Z. Phys. Chem. 2024, https://doi.org/10.1515/zpch-2023-0518.Search in Google Scholar

14. Abdul Shukoor, V.; Sarwan, M.; Singh, S. High Pressure Structural, Elastic and Electronic Properties of a New Half Heusler Compound: Auypb. Phys. B 2018, 547, 83–87; https://doi.org/10.1016/j.physb.2018.08.008.Search in Google Scholar

15. Tavares, S.; Yang, K.; Meyers, M. A. Heusler Alloys: Past, Properties, New Alloys, and Prospects. Prog. Mater. Sci. 2023, 132, 101017; https://doi.org/10.1016/j.pmatsci.2022.101017.Search in Google Scholar

16. Chauhan, N. S.; Bathula, S.; Gahtori, B.; Mahanti, S. D.; Bhattacharya, A.; Vishwakarma, A.; Bhardwaj, R.; Singh, V. N.; Dhar, A. Compositional Tailoring for Realizing High Thermoelectric Performance in Hafnium-free N-type Zrnisn Half-Heusler Alloys. ACS App. Mater. Interfaces 2019, 11 (51), 47830–47836; https://doi.org/10.1021/acsami.9b12599.Search in Google Scholar PubMed

17. Zhang, Y.; Zhang, W.; Yu, X.; Yu, C.; Liu, Z.; Wu, G.; Meng, F. The Structural, Magnetic and Electronic Properties of Fe-Ni-ga Ternary Heusler Alloys. Mater. Sci. Eng.: B 2020, 260, 114654; https://doi.org/10.1016/j.mseb.2020.114654.Search in Google Scholar

18. Kawasaki, J. K.; Chatterjee, S.; Canfield, P. C.; Editors, G. Full and Half-Heusler Compounds. MRS Bull. 2022, 47 (6), 555–558; https://doi.org/10.1557/s43577-022-00355-w.Search in Google Scholar

19. Nepal, S.; Ramesh, D.; Galanakis, I.; Winter, S. M.; Adhikari, R. P.; Kaphle, G. C. Ab Initio Study of Stable 3 D, 4 D, and 5 D Transition-Metal-Based Quaternary Heusler Compounds. Phys. Rev. Mater. 2022, 6 (11), 114407; https://doi.org/10.1103/physrevmaterials.6.114407.Search in Google Scholar

20. Bouhadjer, K.; Boudjelal, M.; Matougui, M.; Bentata, S.; Lantri, T.; Batouche, M.; Seddik, T.; Khenata, R.; Bouadjemi, B.; Omran, S. B.; Iqbal, M. W.; Manzoor, M. Structural, Optoelectronic, Thermodynamic and Thermoelectric Properties of Double Half Heusler (Dhh) Ti2fenisb2 and Ti2ni2insb Compounds: A Tb-Mbj Study. Chin. J. Phys. 2023, 85, 508–523; https://doi.org/10.1016/j.cjph.2023.07.025.Search in Google Scholar

21. Kumar, A.; Jharwal, S.; Prajapati, B.; Kumar, M.; Singh, V. P.; Singh, R. P. Theoretical Investigations on Electronic and Optical Properties of Half Heusler Alloy, Fenbsb for Opto-Electronic Applications. Optical and Quantum Electronics 2022, 54 (11), 717; https://doi.org/10.1007/s11082-022-03919-x.Search in Google Scholar

22. Rogl, G.; Franz Rogl, P. Development of Thermoelectric Half-Heusler Alloys over the Past 25 Years. Crystals 2023, 13 (7), 1152; https://doi.org/10.3390/cryst13071152.Search in Google Scholar

23. Pokar, R.; Mali, K. H.; Dashora, A. Inducing Magnetism in Thermoelectric Half-Heusler Alloy Nbcosb through Doping of Co/mn Metal for Spin-Caloritronics Applications. J. Phys. Chem. Solids 2022, 171, 111025; https://doi.org/10.1016/j.jpcs.2022.111025.Search in Google Scholar

24. Görkem Özdemir, E.; Merdan, Z.; Aliabad, H. A. R. Effects of Applied Different Potentials on Electronic and Half-Metallic Characteristics and Investigated Pressure-dependent Elastic and Thermodynamic Properties of Vru2br4 Spinel. J. Magn. Magn. Mater. 2024, 590, 171671; https://doi.org/10.1016/j.jmmm.2023.171671.Search in Google Scholar

25. Elphick, K.; Frost, W.; Samiepour, M.; Kubota, T.; Takanashi, K.; Sukegawa, H.; Mitani, S.; Hirohata, A. Heusler Alloys for Spintronic Devices: Review on Recent Development and Future Perspectives. Sci. Technol. Adv. Mater. 2021, 22 (1), 235–271; https://doi.org/10.1080/14686996.2020.1812364.Search in Google Scholar PubMed PubMed Central

26. Al-Mahayni, H.; Wang, X.; Harvey, J.-P.; Patience, G. S.; Ali, S. Experimental Methods in Chemical Engineering: Density Functional Theory. Can. J. Chem. Eng. 2021, 99 (9), 1885–1911; https://doi.org/10.1002/cjce.24127.Search in Google Scholar

27. Kohn, W.; Sham, Lu J. Self-consistent Equations Including Exchange and Correlation Effects. Phy. Rev. 1965, 140 (4A), A1133; https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar

28. Blaha, P.; Schwarz, K.; Madsen, G. K. H.; Kvasnicka, D.; Luitz, J. wien2k. An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties 2001, 60 (1).Search in Google Scholar

29. Birch, F. Finite Elastic Strain of Cubic Crystals. Physical review 1947, 71 (11), 809; https://doi.org/10.1103/physrev.71.809.Search in Google Scholar

30. Wu, Z.; Cohen, R. E. More Accurate Generalized Gradient Approximation for Solids. Phys. Rev. B 2006, 73 (23), 235116; https://doi.org/10.1103/physrevb.73.235116.Search in Google Scholar

31. Koller, D.; Tran, F.; Blaha, P. Merits and Limits of the Modified Becke-Johnson Exchange Potential. Phys. Rev. B 2011, 83 (19), 195134; https://doi.org/10.1103/physrevb.83.195134.Search in Google Scholar

32. Nasir Rasul, M.; Hu, T.; Mehmood, M.; Andleeb, F.; Akbar, M. S.; Manzoor, A.; Hussain, A. Structural, Phononic, Opto-Electronic and Elasto-Mechanical Properties of Lixbe (x= n,p) Half Heusler Compounds. Mater. Sci. Semicond. Process. 2024, 172, 108024; https://doi.org/10.1016/j.mssp.2023.108024.Search in Google Scholar

33. Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phy. Rev. B 1976, 13 (12), 5188; https://doi.org/10.1103/physrevb.13.5188.Search in Google Scholar

34. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. Quantum Espresso: a Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phy.: Condens. matter 2009, 21 (39), 395502; https://doi.org/10.1088/0953-8984/21/39/395502.Search in Google Scholar PubMed

35. Otero-de-la Roza, A.; Abbasi-Pérez, D.; Luaña, V. Gibbs2: A New Version of the Quasiharmonic Model Code. Ii. Models for Solid-State Thermodynamics, Features and Implementation. Comput. Phys. Commun. 2011, 182 (10), 2232–2248; https://doi.org/10.1016/j.cpc.2011.05.009.Search in Google Scholar

36. Momma, K.; Izumi, F. Vesta: a Three-Dimensional Visualization System for Electronic and Structural Analysis. J. App. Crystallogr. 2008, 41 (3), 653–658; https://doi.org/10.1107/s0021889808012016.Search in Google Scholar

37. Murnaghan, F. D. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. 1944, 30 (9), 244–247; https://doi.org/10.1073/pnas.30.9.244.Search in Google Scholar PubMed PubMed Central

38. Feng, L.; Liu, E. K.; Zhang, W. X.; Wang, W. H.; Wu, G. H. First-principles Investigation of Half-Metallic Ferromagnetism of Half-Heusler Compounds xyz. J. Magn. Magn. Mater. 2014, 351, 92–97; https://doi.org/10.1016/j.jmmm.2013.09.054.Search in Google Scholar

39. Kirklin, S.; Saal, J. E.; Meredig, B.; Thompson, A.; Doak, J. W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (Oqmd): Assessing the Accuracy of Dft Formation Energies. npj Comput. Mater. 2015, 1 (1), 1–15; https://doi.org/10.1038/npjcompumats.2015.10.Search in Google Scholar

40. Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: the Open Quantum Materials Database (Oqmd). Jom 2013, 65, 1501–1509; https://doi.org/10.1007/s11837-013-0755-4.Search in Google Scholar

41. Mehl, M. J. Pressure Dependence of the Elastic Moduli in Aluminum-Rich Al-Li Compounds. Phys. Rev. B 1993, 47 (5), 2493; https://doi.org/10.1103/physrevb.47.2493.Search in Google Scholar PubMed

42. Khenata, R.; Bouhemadou, A.; Sahnoun, M.; Reshak, A. H.; Baltache, H.; Rabah, M. Elastic, Electronic and Optical Properties of Zns, Znse and Znte under Pressure. Comput. Mater. Sci. 2006, 38 (1), 29–38; https://doi.org/10.1016/j.commatsci.2006.01.013.Search in Google Scholar

43. Bouhemadou, A.; Khenata, R.; Zegrar, F.; Sahnoun, M.; Baltache, H.; Reshak, A. H. Ab Initio Study of Structural, Electronic, Elastic and High Pressure Properties of Barium Chalcogenides. Comput. Mater. Sci. 2006, 38 (2), 263–270; https://doi.org/10.1016/j.commatsci.2006.03.001.Search in Google Scholar

44. Schreiber, E.; Anderson, O. L.; Soga, N.; Bell, J. F Elastic Constants and Their Measurement. J. Appl. Mech. 1975, 42 (3), 747–748; https://doi.org/10.1115/1.3423687.Search in Google Scholar

45. Waller, I. Dynamical Theory of Crystal Lattices by M. Born and K. Huang. Acta Crystallogr. 1956, 9 (10), 837–838; https://doi.org/10.1107/s0365110x56002370.Search in Google Scholar

46. Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Oxford University Press: Oxford, 1996.10.1093/oso/9780192670083.001.0001Search in Google Scholar

47. Pugh, S. F. Xcii. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1954, 45 (367), 823–843; https://doi.org/10.1080/14786440808520496.Search in Google Scholar

48. Senkov, O. N.; Miracle, D. B. Generalization of Intrinsic Ductile-To-Brittle Criteria by Pugh and Pettifor for Materials with a Cubic Crystal Structure. Sci. Rep. 2021, 11 (1), 4531; https://doi.org/10.1038/s41598-021-83953-z.Search in Google Scholar PubMed PubMed Central

49. Olawole, O. C.; Adetunji, B. I.; Adebambo, P. O.; Adebayo, G. A. Unveiling the Mechanical and Dynamical Stability to the Contribution of Transport Properties of Fenbsb: A First Principle Approach. Comput. Condens. Matter 2023, e00821; https://doi.org/10.1016/j.cocom.2023.e00821.Search in Google Scholar

50. Balasubramanian, S.; Srinivasan, M.; Perumalsamy, R.; Perumalsamy, R. An Ab Initio Study of Novel Quaternary Heusler Alloys for Spin Polarized and Waste Heat Recycling Systems. J. Magn. Magn. Mater. 2023, 571, 170541; https://doi.org/10.1016/j.jmmm.2023.170541.Search in Google Scholar

51. Sun, Z.; Li, Sa; Ahuja, R.; Schneider, J. M. Calculated Elastic Properties of M2alc (m= ti, v, cr, nb and ta). Solid State Commun. 2004, 129 (9), 589–592; https://doi.org/10.1016/j.ssc.2003.12.008.Search in Google Scholar

52. Gaillac, R.; Pullumbi, P.; Coudert, F.-X. Elate: an Open-Source Online Application for Analysis and Visualization of Elastic Tensors. J. Phys.: Condens. Matter 2016, 28 (27), 275201; https://doi.org/10.1088/0953-8984/28/27/275201.Search in Google Scholar PubMed

53. Kleinman, L. Deformation Potentials in Silicon. I. Uniaxial Strain. Phy. Rev. 1962, 128 (6), 2614; https://doi.org/10.1103/physrev.128.2614.Search in Google Scholar

54. Chen, X.-Q.; Niu, H.; Li, D.; Li, Y. Modeling Hardness of Polycrystalline Materials and Bulk Metallic Glasses. Intermetallics 2011, 19 (9), 1275–1281; https://doi.org/10.1016/j.intermet.2011.03.026.Search in Google Scholar

55. Anderson, O. L. A Simplified Method for Calculating the Debye Temperature from Elastic Constants. J. Phys. Chem. Solids 1963, 24 (7), 909–917; https://doi.org/10.1016/0022-3697(63)90067-2.Search in Google Scholar

56. Quyoom Seh, Ab; Gupta, D. C. Exploration of Highly Correlated Co-based Quaternary Heusler Alloys for Spintronics and Thermoelectric Applications. Int. J. Energy Res. 2019, 43 (14), 8864–8877.10.1002/er.4853Search in Google Scholar

57. Borlido, P.; Schmidt, J.; Huran, A. W.; Tran, F.; Marques, M. A. L.; Botti, S. Exchange-correlation Functionals for Band Gaps of Solids: Benchmark, Reparametrization and Machine Learning. npj Comput. Mater. 2020, 6 (1), 96; https://doi.org/10.1038/s41524-020-00360-0.Search in Google Scholar

58. Nenuwe, N. O.; Omugbe, E. Electronic Properties of Half-Heusler Compounds Xcrsb (x= fe, ru, os): Potential Applications as Spintronics and High-Performance Thermoelectric Materials. Curr. App. Phy. 2023, 49, 70–77; https://doi.org/10.1016/j.cap.2023.02.013.Search in Google Scholar

59. Atif Sattar, M.; Javed, M.; Bouzieh, N.Al; Benkraouda, M.; Amrane, N. First-principles Investigation on the Novel Half-Heusler Vxte (x= cr, mn, fe, and co) Alloys for Spintronic and Thermoelectric Applications. Mater. Sci. Semicond. Process. 2023, 155, 107233; https://doi.org/10.1016/j.mssp.2022.107233.Search in Google Scholar

60. Bennani, M. A.; Aziz, Z.; Terkhi, S.; Elandaloussi, E. H.; Bouadjemi, B.; Chenine, D.; Benidris, M.; Youb, O.; Bentata, S. Structural, Electronic, Magnetic, Elastic, Thermodynamic, and Thermoelectric Properties of the Half-Heusler Rhfex (With X= Ge, Sn) Compounds. J. Supercond. Novel Magn. 2021, 34, 211–225; https://doi.org/10.1007/s10948-020-05677-x.Search in Google Scholar

61. Kumar Yadav, D.; Bhandari, S. R.; Kaphle, G. C. Structural, Elastic, Electronic, and Magnetic Properties of Mnnbz (z= as, sb) and Fenbz (z= sn, pb) Semi-heusler Alloys. Mater. Res. Express 2020, 7 (11), 116527; https://doi.org/10.1088/2053-1591/abcc86.Search in Google Scholar

62. Galanakis, I. Slater–pauling Behavior in Half-Metallic Heusler Compounds. Nanomaterials, 13 (13), 2010–2023; https://doi.org/10.3390/nano13132010.Search in Google Scholar PubMed PubMed Central

63. Adetunji, B. I.; Adebambo, P. O.; Bamgbose, M. K.; Musari, A. A.; Adebayo, G. A. Predicting the Elastic, Phonon and Thermodynamic Properties of Cubic Hfnix (X= Ge and Sn) Half Heulser Alloys: a Dft Study. Eur. Phys. J. B 2019, 92, 1–7; https://doi.org/10.1140/epjb/e2019-100305-3.Search in Google Scholar

64. Osafile, O. E.; Umukoro, J. O. Quasi-harmonic Approximation of Lattice Dynamics and Thermodynamic Properties of Half Heusler Scxsb (x= ni, pd, pt) from First Principles. J. Phys.: Condens. Matter 2020, 32 (47), 475504; https://doi.org/10.1088/1361-648x/aba8c9.Search in Google Scholar

65. Synoradzki, K.; Ciesielski, K.; Veremchuk, I.; Borrmann, H.; Skokowski, P.; Szymański, D.; Grin, Y.; Kaczorowski, D. Thermal and Electronic Transport Properties of the Half-Heusler Phase Scnisb. Materials 2019, 12 (10), 1723; https://doi.org/10.3390/ma12101723.Search in Google Scholar PubMed PubMed Central

66. Jawdat Abdullah, B.; Omar, M. S.; Jiang, Q. Size Effects on Cohesive Energy, Debye Temperature and Lattice Heat Capacity from First-Principles Calculations of Sn Nanoparticles. Proc. Natl. Acad. Sci., India, Sect. A: Phy. Sci. 2018, 88, 629–632; https://doi.org/10.1007/s40010-017-0417-y.Search in Google Scholar

Received: 2024-02-29
Accepted: 2024-10-25
Published Online: 2025-02-06
Published in Print: 2025-10-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0759/pdf?lang=en
Scroll to top button