Unlocking the potential of FeNbGe Half Heusler: stability, electronic, magnetic and thermodynamic properties
-
Hannah Jeniffer Immanuel
, Mahalakshmi Ponniah
, Sudharsan Balasubramanian, Punithavelan Nallamuthu
, Saravanan Sundaram , Yordanos Abay Lema and M. Srinivasan
Abstract
In this paper, we investigate the electronic, magnetic, mechanical, dynamical, and thermodynamical properties of novel FeNbGe half Heusler alloy by first principle calculations. The alloy’s thermodynamic and dynamic stability were verified, and it was found feasible to synthesize experimentally. The calculated elastic constants prove the mechanical stability of the material. The malleable and ductile nature of the material was confirmed through Pugh’s and Poisson’s ratios. The electronic properties were calculated using the GGA and TB-mBJ exchange-correlation potentials. The band structure in the spin-down channel reflects metallic behaviour. In contrast, the spin-up channel shows non-metallic behaviour, which infers the half-metallic property of our half-Heusler alloy, which is a desirable property for spintronic materials. The alloy displayed an indirect band gap of 1.06 eV from GGA and 1.15 eV from TB-mBJ functionals. The Heusler alloy under study with 17 valence electrons, was found to be a Ferromagnetic alloy with a total magnetic moment of −1μ B . The half-metallicity retaining property was studied by imposing expansive volumetric strain. The small band gap, half-metallic property, and the ferromagnetic nature of our material suggest that it can be a suitable material for spintronics applications.
Funding source: SRM IST, Ramapuram, Tamil Nadu, India
Award Identifier / Grant number: SRM/IST-RMP/RI/004
Acknowledgments
JBS would like to thank SRM IST, Ramapuram, India, for their financial support, vide number SRM/IST-RMP/RI/004.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: H.J.I. – Original analysis, original draft, study, consolidation of data; M.P. – Study, editing the original draft, consolidation of data; S.B. – Problem framing, investigation, editing draft, supervision, fund acquisition; P.N. – supervision, fund acquisition; S.N.– Editing draft and analysis: Y.A.L. – Editing draft and analysis; S.M. – Editing draft and supervision. All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: Sudharsan Balasubramanian would like to thank SRM IST, Ramapuram, India, for their financial support, vide number SRM/IST-RMP/RI/004.
-
Data availability: Not applicable.
References
1. Wei, J.; Yang, L.; Ma, Z.; Song, P.; Zhang, M.; Ma, J.; Yang, F.; Wang, X. Review of Current High-ZT Thermoelectric Materials. J. Mater. Sci. 2020, 55 (27), 12642–12704.10.1007/s10853-020-04949-0Search in Google Scholar
2. Devarajan, U.; Sivaprakash, P.; Venkateswaran, C.; Hariharan, P.; Kawamura, Y.; Sekine, C.; Arumugam, S. Induced Triplet Transitions by the Effect of Antiferromagnetic (Sm) Substitution and Investigations on Structural, Magnetic, Magnetocaloric Properties of Mn1-Xsmxcoge Heulser Alloys. J. Magn. Magn. Mater. 2021, 529, 167912; https://doi.org/10.1016/j.jmmm.2021.167912.Search in Google Scholar
3. Sivaprakash, P.; Arumugam, S.; Esakki Muthu, S.; Raj Kumar, D. M.; Saravanan, C.; Rama Rao, N. V.; Uwatoko, Y.; Thiyagarajan, R. Correlation of Magnetocaloric Effect Through Magnetic and Electrical Resistivity on Si Doped Ni–Mn–In Heusler Melt Spun Ribbon. Intermetallics 2021, 137, 107285; https://doi.org/10.1016/j.intermet.2021.107285.Search in Google Scholar
4. Sivaprakash, P.; Esakki Muthu, S.; Jerries Infanta, J.; Rajkumar, S.; Kim, I.; Arumugam, S. Investigation of Exchange Bias and Magnetoresistance in the Si Substituted Ni-Mn-In Ribbon Alloys. Mater. Sci. Eng.: B 2022, 286, 116067; https://doi.org/10.1016/j.mseb.2022.116067.Search in Google Scholar
5. Esakki Muthu, S.; Sivaprakash, P.; Thiyagarajan, R.; Saravanan, C.; Arumugam, S. Investigation of Magnetic Entropy Change and Critical Behavior Analysis of Cu-And Si-Doped Ni–Mn–Sn Heusler Alloys. J. Supercond. Novel Magn. 2020, 33, 3587–3595; https://doi.org/10.1007/s10948-020-05622-y.Search in Google Scholar
6. Rached, D.; Boumia, L.; Caid, M.; Rached, Y.; Belkacem, A. A. A.; Rached, H.; Merabet, M.; Benalia, S. The Half-Metallic Ferromagnetic and Thermoelectric Responses of the Potential Thermo-Spintronic Compounds Crtirhz (z: Al or si) qha. Indian J. Phys. 2024, 98 (5), 1645–1654; https://doi.org/10.1007/s12648-023-02936-0.Search in Google Scholar
7. Bouferrache, K.; Ghebouli, M. A.; Slimani, Y.; Ghebouli, B.; Fatmi, M.; Chihi, T.; Algethami, N.; Mouhammad, S. A.; Alomairy, S.; Elkenany, E. B. Structural Stability, Opto-Electronic, Magnetic and Thermoelectric Properties of Half-Metallic Ferromagnets Quaternary Heusler Alloys Cofexas (X=Mn, Cr and V). Solid State Commun. 2024, 377, 115366; https://doi.org/10.1016/j.ssc.2023.115366.Search in Google Scholar
8. Ghellab, T.; Charifi, Z.; Baaziz, H.; Latelli, N. Optoelectronics and Thermoelectric Performances in Cux (X=F, Cl, Br, and I). Z. Naturforsch. A 2024, 79 (3), 261–282. https://doi.org/10.1515/zna-2023-0237.Search in Google Scholar
9. Hirohata, A.; Lloyd, D. C. Heusler Alloys for Metal Spintronics. MRS Bull. 2022, 47 (6), 593–599; https://doi.org/10.1557/s43577-022-00350-1.Search in Google Scholar
10. Toual, Y.; Mouchou, S.; Rani, U.; Azouaoui, A.; Hourmatallah, A.; Masrour, R.; Rezzouk, A.; Bouslykhane, K.; Benzakour, N. Probing Electronic, Magnetic and Thermal Properties of Nimnsb Half-Heusler Alloy for Spintronics as an Environmentally Friendly Energy Resource: a Dft+ U and Monte Carlo Study. Mater. Today Commun. 2024, 38, 108064; https://doi.org/10.1016/j.mtcomm.2024.108064.Search in Google Scholar
11. Gurunani, B.; Ghosh, S.; Gupta, D. C. Comprehensive Investigation of Half Heusler Alloy: Unveiling Structural, Electronic, Magnetic, Mechanical, Thermodynamic, and Transport Properties. Intermetallics 2024, 170, 108311; https://doi.org/10.1016/j.intermet.2024.108311.Search in Google Scholar
12. Herald Milton, P.; Elangeeran, S.; Mabood Husain, F.; Vignesh, S.; Arangarajan, V. Investigation on Electrochemical Corrosion Behavior and Mechanical Properties of Fe-Nano Particles Produced by High-Energy Ball Milling Technique. Z. Phys. Chem. 2024, https://doi.org/10.1515/zpch-2023-0515.Search in Google Scholar
13. Kavu, K.; Sankaran, E. M.; Kumar Kaliamurthy, A.; Hasan, I.; Sahadevan, J.; Vignesh, S.; Suganthi, S. Estimation on Magnetic Entropy Change and Specific Heat Capacity through Phoenomological Model for Heusler Melt Spun Ribbon of Ni47mn40-Xsi Xin3 (X = 1, 2 and 3). Z. Phys. Chem. 2024, https://doi.org/10.1515/zpch-2023-0518.Search in Google Scholar
14. Abdul Shukoor, V.; Sarwan, M.; Singh, S. High Pressure Structural, Elastic and Electronic Properties of a New Half Heusler Compound: Auypb. Phys. B 2018, 547, 83–87; https://doi.org/10.1016/j.physb.2018.08.008.Search in Google Scholar
15. Tavares, S.; Yang, K.; Meyers, M. A. Heusler Alloys: Past, Properties, New Alloys, and Prospects. Prog. Mater. Sci. 2023, 132, 101017; https://doi.org/10.1016/j.pmatsci.2022.101017.Search in Google Scholar
16. Chauhan, N. S.; Bathula, S.; Gahtori, B.; Mahanti, S. D.; Bhattacharya, A.; Vishwakarma, A.; Bhardwaj, R.; Singh, V. N.; Dhar, A. Compositional Tailoring for Realizing High Thermoelectric Performance in Hafnium-free N-type Zrnisn Half-Heusler Alloys. ACS App. Mater. Interfaces 2019, 11 (51), 47830–47836; https://doi.org/10.1021/acsami.9b12599.Search in Google Scholar PubMed
17. Zhang, Y.; Zhang, W.; Yu, X.; Yu, C.; Liu, Z.; Wu, G.; Meng, F. The Structural, Magnetic and Electronic Properties of Fe-Ni-ga Ternary Heusler Alloys. Mater. Sci. Eng.: B 2020, 260, 114654; https://doi.org/10.1016/j.mseb.2020.114654.Search in Google Scholar
18. Kawasaki, J. K.; Chatterjee, S.; Canfield, P. C.; Editors, G. Full and Half-Heusler Compounds. MRS Bull. 2022, 47 (6), 555–558; https://doi.org/10.1557/s43577-022-00355-w.Search in Google Scholar
19. Nepal, S.; Ramesh, D.; Galanakis, I.; Winter, S. M.; Adhikari, R. P.; Kaphle, G. C. Ab Initio Study of Stable 3 D, 4 D, and 5 D Transition-Metal-Based Quaternary Heusler Compounds. Phys. Rev. Mater. 2022, 6 (11), 114407; https://doi.org/10.1103/physrevmaterials.6.114407.Search in Google Scholar
20. Bouhadjer, K.; Boudjelal, M.; Matougui, M.; Bentata, S.; Lantri, T.; Batouche, M.; Seddik, T.; Khenata, R.; Bouadjemi, B.; Omran, S. B.; Iqbal, M. W.; Manzoor, M. Structural, Optoelectronic, Thermodynamic and Thermoelectric Properties of Double Half Heusler (Dhh) Ti2fenisb2 and Ti2ni2insb Compounds: A Tb-Mbj Study. Chin. J. Phys. 2023, 85, 508–523; https://doi.org/10.1016/j.cjph.2023.07.025.Search in Google Scholar
21. Kumar, A.; Jharwal, S.; Prajapati, B.; Kumar, M.; Singh, V. P.; Singh, R. P. Theoretical Investigations on Electronic and Optical Properties of Half Heusler Alloy, Fenbsb for Opto-Electronic Applications. Optical and Quantum Electronics 2022, 54 (11), 717; https://doi.org/10.1007/s11082-022-03919-x.Search in Google Scholar
22. Rogl, G.; Franz Rogl, P. Development of Thermoelectric Half-Heusler Alloys over the Past 25 Years. Crystals 2023, 13 (7), 1152; https://doi.org/10.3390/cryst13071152.Search in Google Scholar
23. Pokar, R.; Mali, K. H.; Dashora, A. Inducing Magnetism in Thermoelectric Half-Heusler Alloy Nbcosb through Doping of Co/mn Metal for Spin-Caloritronics Applications. J. Phys. Chem. Solids 2022, 171, 111025; https://doi.org/10.1016/j.jpcs.2022.111025.Search in Google Scholar
24. Görkem Özdemir, E.; Merdan, Z.; Aliabad, H. A. R. Effects of Applied Different Potentials on Electronic and Half-Metallic Characteristics and Investigated Pressure-dependent Elastic and Thermodynamic Properties of Vru2br4 Spinel. J. Magn. Magn. Mater. 2024, 590, 171671; https://doi.org/10.1016/j.jmmm.2023.171671.Search in Google Scholar
25. Elphick, K.; Frost, W.; Samiepour, M.; Kubota, T.; Takanashi, K.; Sukegawa, H.; Mitani, S.; Hirohata, A. Heusler Alloys for Spintronic Devices: Review on Recent Development and Future Perspectives. Sci. Technol. Adv. Mater. 2021, 22 (1), 235–271; https://doi.org/10.1080/14686996.2020.1812364.Search in Google Scholar PubMed PubMed Central
26. Al-Mahayni, H.; Wang, X.; Harvey, J.-P.; Patience, G. S.; Ali, S. Experimental Methods in Chemical Engineering: Density Functional Theory. Can. J. Chem. Eng. 2021, 99 (9), 1885–1911; https://doi.org/10.1002/cjce.24127.Search in Google Scholar
27. Kohn, W.; Sham, Lu J. Self-consistent Equations Including Exchange and Correlation Effects. Phy. Rev. 1965, 140 (4A), A1133; https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar
28. Blaha, P.; Schwarz, K.; Madsen, G. K. H.; Kvasnicka, D.; Luitz, J. wien2k. An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties 2001, 60 (1).Search in Google Scholar
29. Birch, F. Finite Elastic Strain of Cubic Crystals. Physical review 1947, 71 (11), 809; https://doi.org/10.1103/physrev.71.809.Search in Google Scholar
30. Wu, Z.; Cohen, R. E. More Accurate Generalized Gradient Approximation for Solids. Phys. Rev. B 2006, 73 (23), 235116; https://doi.org/10.1103/physrevb.73.235116.Search in Google Scholar
31. Koller, D.; Tran, F.; Blaha, P. Merits and Limits of the Modified Becke-Johnson Exchange Potential. Phys. Rev. B 2011, 83 (19), 195134; https://doi.org/10.1103/physrevb.83.195134.Search in Google Scholar
32. Nasir Rasul, M.; Hu, T.; Mehmood, M.; Andleeb, F.; Akbar, M. S.; Manzoor, A.; Hussain, A. Structural, Phononic, Opto-Electronic and Elasto-Mechanical Properties of Lixbe (x= n,p) Half Heusler Compounds. Mater. Sci. Semicond. Process. 2024, 172, 108024; https://doi.org/10.1016/j.mssp.2023.108024.Search in Google Scholar
33. Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phy. Rev. B 1976, 13 (12), 5188; https://doi.org/10.1103/physrevb.13.5188.Search in Google Scholar
34. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.; Dal Corso, A.; de Gironcoli, S.; Fabris, S.; Fratesi, G.; Gebauer, R.; Gerstmann, U.; Gougoussis, C.; Kokalj, A.; Lazzeri, M.; Martin-Samos, L.; Marzari, N.; Mauri, F.; Mazzarello, R.; Paolini, S.; Pasquarello, A.; Paulatto, L.; Sbraccia, C.; Scandolo, S.; Sclauzero, G.; Seitsonen, A. P.; Smogunov, A.; Umari, P.; Wentzcovitch, R. M. Quantum Espresso: a Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phy.: Condens. matter 2009, 21 (39), 395502; https://doi.org/10.1088/0953-8984/21/39/395502.Search in Google Scholar PubMed
35. Otero-de-la Roza, A.; Abbasi-Pérez, D.; Luaña, V. Gibbs2: A New Version of the Quasiharmonic Model Code. Ii. Models for Solid-State Thermodynamics, Features and Implementation. Comput. Phys. Commun. 2011, 182 (10), 2232–2248; https://doi.org/10.1016/j.cpc.2011.05.009.Search in Google Scholar
36. Momma, K.; Izumi, F. Vesta: a Three-Dimensional Visualization System for Electronic and Structural Analysis. J. App. Crystallogr. 2008, 41 (3), 653–658; https://doi.org/10.1107/s0021889808012016.Search in Google Scholar
37. Murnaghan, F. D. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. 1944, 30 (9), 244–247; https://doi.org/10.1073/pnas.30.9.244.Search in Google Scholar PubMed PubMed Central
38. Feng, L.; Liu, E. K.; Zhang, W. X.; Wang, W. H.; Wu, G. H. First-principles Investigation of Half-Metallic Ferromagnetism of Half-Heusler Compounds xyz. J. Magn. Magn. Mater. 2014, 351, 92–97; https://doi.org/10.1016/j.jmmm.2013.09.054.Search in Google Scholar
39. Kirklin, S.; Saal, J. E.; Meredig, B.; Thompson, A.; Doak, J. W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (Oqmd): Assessing the Accuracy of Dft Formation Energies. npj Comput. Mater. 2015, 1 (1), 1–15; https://doi.org/10.1038/npjcompumats.2015.10.Search in Google Scholar
40. Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: the Open Quantum Materials Database (Oqmd). Jom 2013, 65, 1501–1509; https://doi.org/10.1007/s11837-013-0755-4.Search in Google Scholar
41. Mehl, M. J. Pressure Dependence of the Elastic Moduli in Aluminum-Rich Al-Li Compounds. Phys. Rev. B 1993, 47 (5), 2493; https://doi.org/10.1103/physrevb.47.2493.Search in Google Scholar PubMed
42. Khenata, R.; Bouhemadou, A.; Sahnoun, M.; Reshak, A. H.; Baltache, H.; Rabah, M. Elastic, Electronic and Optical Properties of Zns, Znse and Znte under Pressure. Comput. Mater. Sci. 2006, 38 (1), 29–38; https://doi.org/10.1016/j.commatsci.2006.01.013.Search in Google Scholar
43. Bouhemadou, A.; Khenata, R.; Zegrar, F.; Sahnoun, M.; Baltache, H.; Reshak, A. H. Ab Initio Study of Structural, Electronic, Elastic and High Pressure Properties of Barium Chalcogenides. Comput. Mater. Sci. 2006, 38 (2), 263–270; https://doi.org/10.1016/j.commatsci.2006.03.001.Search in Google Scholar
44. Schreiber, E.; Anderson, O. L.; Soga, N.; Bell, J. F Elastic Constants and Their Measurement. J. Appl. Mech. 1975, 42 (3), 747–748; https://doi.org/10.1115/1.3423687.Search in Google Scholar
45. Waller, I. Dynamical Theory of Crystal Lattices by M. Born and K. Huang. Acta Crystallogr. 1956, 9 (10), 837–838; https://doi.org/10.1107/s0365110x56002370.Search in Google Scholar
46. Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Oxford University Press: Oxford, 1996.10.1093/oso/9780192670083.001.0001Search in Google Scholar
47. Pugh, S. F. Xcii. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals. London, Edinburgh, Dublin Philos. Mag. J. Sci. 1954, 45 (367), 823–843; https://doi.org/10.1080/14786440808520496.Search in Google Scholar
48. Senkov, O. N.; Miracle, D. B. Generalization of Intrinsic Ductile-To-Brittle Criteria by Pugh and Pettifor for Materials with a Cubic Crystal Structure. Sci. Rep. 2021, 11 (1), 4531; https://doi.org/10.1038/s41598-021-83953-z.Search in Google Scholar PubMed PubMed Central
49. Olawole, O. C.; Adetunji, B. I.; Adebambo, P. O.; Adebayo, G. A. Unveiling the Mechanical and Dynamical Stability to the Contribution of Transport Properties of Fenbsb: A First Principle Approach. Comput. Condens. Matter 2023, e00821; https://doi.org/10.1016/j.cocom.2023.e00821.Search in Google Scholar
50. Balasubramanian, S.; Srinivasan, M.; Perumalsamy, R.; Perumalsamy, R. An Ab Initio Study of Novel Quaternary Heusler Alloys for Spin Polarized and Waste Heat Recycling Systems. J. Magn. Magn. Mater. 2023, 571, 170541; https://doi.org/10.1016/j.jmmm.2023.170541.Search in Google Scholar
51. Sun, Z.; Li, Sa; Ahuja, R.; Schneider, J. M. Calculated Elastic Properties of M2alc (m= ti, v, cr, nb and ta). Solid State Commun. 2004, 129 (9), 589–592; https://doi.org/10.1016/j.ssc.2003.12.008.Search in Google Scholar
52. Gaillac, R.; Pullumbi, P.; Coudert, F.-X. Elate: an Open-Source Online Application for Analysis and Visualization of Elastic Tensors. J. Phys.: Condens. Matter 2016, 28 (27), 275201; https://doi.org/10.1088/0953-8984/28/27/275201.Search in Google Scholar PubMed
53. Kleinman, L. Deformation Potentials in Silicon. I. Uniaxial Strain. Phy. Rev. 1962, 128 (6), 2614; https://doi.org/10.1103/physrev.128.2614.Search in Google Scholar
54. Chen, X.-Q.; Niu, H.; Li, D.; Li, Y. Modeling Hardness of Polycrystalline Materials and Bulk Metallic Glasses. Intermetallics 2011, 19 (9), 1275–1281; https://doi.org/10.1016/j.intermet.2011.03.026.Search in Google Scholar
55. Anderson, O. L. A Simplified Method for Calculating the Debye Temperature from Elastic Constants. J. Phys. Chem. Solids 1963, 24 (7), 909–917; https://doi.org/10.1016/0022-3697(63)90067-2.Search in Google Scholar
56. Quyoom Seh, Ab; Gupta, D. C. Exploration of Highly Correlated Co-based Quaternary Heusler Alloys for Spintronics and Thermoelectric Applications. Int. J. Energy Res. 2019, 43 (14), 8864–8877.10.1002/er.4853Search in Google Scholar
57. Borlido, P.; Schmidt, J.; Huran, A. W.; Tran, F.; Marques, M. A. L.; Botti, S. Exchange-correlation Functionals for Band Gaps of Solids: Benchmark, Reparametrization and Machine Learning. npj Comput. Mater. 2020, 6 (1), 96; https://doi.org/10.1038/s41524-020-00360-0.Search in Google Scholar
58. Nenuwe, N. O.; Omugbe, E. Electronic Properties of Half-Heusler Compounds Xcrsb (x= fe, ru, os): Potential Applications as Spintronics and High-Performance Thermoelectric Materials. Curr. App. Phy. 2023, 49, 70–77; https://doi.org/10.1016/j.cap.2023.02.013.Search in Google Scholar
59. Atif Sattar, M.; Javed, M.; Bouzieh, N.Al; Benkraouda, M.; Amrane, N. First-principles Investigation on the Novel Half-Heusler Vxte (x= cr, mn, fe, and co) Alloys for Spintronic and Thermoelectric Applications. Mater. Sci. Semicond. Process. 2023, 155, 107233; https://doi.org/10.1016/j.mssp.2022.107233.Search in Google Scholar
60. Bennani, M. A.; Aziz, Z.; Terkhi, S.; Elandaloussi, E. H.; Bouadjemi, B.; Chenine, D.; Benidris, M.; Youb, O.; Bentata, S. Structural, Electronic, Magnetic, Elastic, Thermodynamic, and Thermoelectric Properties of the Half-Heusler Rhfex (With X= Ge, Sn) Compounds. J. Supercond. Novel Magn. 2021, 34, 211–225; https://doi.org/10.1007/s10948-020-05677-x.Search in Google Scholar
61. Kumar Yadav, D.; Bhandari, S. R.; Kaphle, G. C. Structural, Elastic, Electronic, and Magnetic Properties of Mnnbz (z= as, sb) and Fenbz (z= sn, pb) Semi-heusler Alloys. Mater. Res. Express 2020, 7 (11), 116527; https://doi.org/10.1088/2053-1591/abcc86.Search in Google Scholar
62. Galanakis, I. Slater–pauling Behavior in Half-Metallic Heusler Compounds. Nanomaterials, 13 (13), 2010–2023; https://doi.org/10.3390/nano13132010.Search in Google Scholar PubMed PubMed Central
63. Adetunji, B. I.; Adebambo, P. O.; Bamgbose, M. K.; Musari, A. A.; Adebayo, G. A. Predicting the Elastic, Phonon and Thermodynamic Properties of Cubic Hfnix (X= Ge and Sn) Half Heulser Alloys: a Dft Study. Eur. Phys. J. B 2019, 92, 1–7; https://doi.org/10.1140/epjb/e2019-100305-3.Search in Google Scholar
64. Osafile, O. E.; Umukoro, J. O. Quasi-harmonic Approximation of Lattice Dynamics and Thermodynamic Properties of Half Heusler Scxsb (x= ni, pd, pt) from First Principles. J. Phys.: Condens. Matter 2020, 32 (47), 475504; https://doi.org/10.1088/1361-648x/aba8c9.Search in Google Scholar
65. Synoradzki, K.; Ciesielski, K.; Veremchuk, I.; Borrmann, H.; Skokowski, P.; Szymański, D.; Grin, Y.; Kaczorowski, D. Thermal and Electronic Transport Properties of the Half-Heusler Phase Scnisb. Materials 2019, 12 (10), 1723; https://doi.org/10.3390/ma12101723.Search in Google Scholar PubMed PubMed Central
66. Jawdat Abdullah, B.; Omar, M. S.; Jiang, Q. Size Effects on Cohesive Energy, Debye Temperature and Lattice Heat Capacity from First-Principles Calculations of Sn Nanoparticles. Proc. Natl. Acad. Sci., India, Sect. A: Phy. Sci. 2018, 88, 629–632; https://doi.org/10.1007/s40010-017-0417-y.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Articles
- Surfactants in action: chemistry, behavior, and industrial applications
- Smart nanomaterials for clean water and a comprehensive exploration of the potentials of metal oxide nanoparticles in environmental remediation
- Nanomaterials at the forefront: classification, fabrication technique, and cross-sector applications
- Original Papers
- Unlocking the potential of FeNbGe Half Heusler: stability, electronic, magnetic and thermodynamic properties
- Investigating the antibacterial potency of Schiff base derivatives as potential agents for urinary tract infection: DFT, solvation, molecular docking and pharmacokinetic studies
- Continuous rapid cooling of polarized electrons initiates Mpemba superfreezing
- Synthesis and characterization of CNTs doped polymeric composites: comparative studies on exploring impact of CNT concentration on morphological, structural, thermokinetic and mechanical attributes
- Frumkin’s adsorption model – a successful approach for understanding surfactant adsorption layers
Articles in the same Issue
- Frontmatter
- Review Articles
- Surfactants in action: chemistry, behavior, and industrial applications
- Smart nanomaterials for clean water and a comprehensive exploration of the potentials of metal oxide nanoparticles in environmental remediation
- Nanomaterials at the forefront: classification, fabrication technique, and cross-sector applications
- Original Papers
- Unlocking the potential of FeNbGe Half Heusler: stability, electronic, magnetic and thermodynamic properties
- Investigating the antibacterial potency of Schiff base derivatives as potential agents for urinary tract infection: DFT, solvation, molecular docking and pharmacokinetic studies
- Continuous rapid cooling of polarized electrons initiates Mpemba superfreezing
- Synthesis and characterization of CNTs doped polymeric composites: comparative studies on exploring impact of CNT concentration on morphological, structural, thermokinetic and mechanical attributes
- Frumkin’s adsorption model – a successful approach for understanding surfactant adsorption layers