A computational study of the conformational stability, vibrational spectra, and thermochemical properties of 2,6-dichlorobenzamide, 2-(trifluoromethyl)benzamide, 2-(trifluoromethyl)benzoic acid, and 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid
Abstract
2,6-Dichlorobenzamide (BAM), 2-(trifluoromethyl)benzamide (TBAM), 2-(trifluoromethyl)benzoic acid (TBA), and 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid (PCA) are degradation by-products of fluopicolide and fluopyram fungicides. In this work, a detailed theoretical study of their different molecular, spectroscopic and thermochemical properties was carried out with different formulations of the density functional theory and high-level model chemistries. The mean values of −146.0 ± 6.3, −763.2 ± 6.3, −949.0 ± 6.3, and −919.4 ± 6.3 kJ mol−1 for the standard enthalpies of formation of BAM, TBAM, TBA and PCA, respectively, were derived for the first time at the G3MP2//DFT and G4MP2//DFT levels of theory (DFT = B3LYP, BMK, and B98). Additionally, a good agreement between formation enthalpies derived from isodesmic reaction approach and from Benson’s group additivity method was obtained.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Contribution of each author: Wilfred Espinosa Manrique: Theoretical calculations. Formal analysis. María Paula Badenes: Conceptualization. Formal analysis. Writing – Original Draft. Writing-Review and Editing. Project administration. María Eugenia Tucceri: Conceptualization. Formal analysis. Writing – Original Draft. Writing-Review and Editing. Project administration.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This work was supported by the Universidad Nacional de La Plata (11/X842, 11/X919); the Consejo Nacional de Investigaciones Científicas y Tócnicas CONICET (PUE 22920170100100CO); and the Agencia Nacional de Promoción Científica y Tecnológica (PICT 2018-2523, PICT 2018-3738). W. E. M. thanks CONICET for his doctoral fellowship.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Fujiwara, T., O’Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluorine Chem. 2014, 167, 16–29; https://doi.org/10.1016/j.jfluchem.2014.06.014.Search in Google Scholar
2. Villamil Lepori, E. C., Mitre, G. B., Nassetta, M. Situación Actual de la Contaminación por Plaguicidas en Argentina. Rev. Int. Contam. Ambient. 2013, 29, 25–43.Search in Google Scholar
3. Pivato, A., Lavagnolo, M. C., Manachini, B., Vanin, S., Raga, R., Beggio, G. Ecological risk assessment of agricultural soils for the definition of soil screening values: a comparison between substance-based and matrix-based approaches. Heliyon 2017, 3, e00284; https://doi.org/10.1016/j.heliyon.2017.e00284.Search in Google Scholar PubMed PubMed Central
4. Saunders, D. G., Mosier, J. W. Photolysis of the aquatic herbicide fluridone in aqueous solution. J. Agric. Food Chem. 1983, 31, 237–241; https://doi.org/10.1021/jf00116a013.Search in Google Scholar
5. Mohapatra, S., Ahuja, A. K., Deepa, M., Jagdish, G. K., Rashmi, N., Kumar, S., Prakash, G. S. Persistence and dissipation of fluopicolide in/on grape berries and soil under semi arid tropical climatic conditions of India. Bull. Environ. Contam. Toxicol. 2011, 86, 238–241; https://doi.org/10.1007/s00128-011-0193-3.Search in Google Scholar PubMed
6. Wang, P., Li, M., Liu, X., Xu, J., Dong, F., Wu, X., Zheng, Y. Degradation of cyflumetofen and formation of its main metabolites in soils and water/sediment systems. Environ. Sci. Pollut. Res. 2016, 23, 23114–23122; https://doi.org/10.1007/s11356-016-7523-2.Search in Google Scholar PubMed
7. Wei, P., Liu, Y., Li, W., Qian, Y., Nie, Y., Kim, D., Wang, M. Metabolic and dynamic profiling for risk assessment of fluopyram, a typical phenylamide fungicide widely applied in vegetable ecosystem. Sci. Rep. 2016, 6, 1–12; https://doi.org/10.1038/srep33898.Search in Google Scholar PubMed PubMed Central
8. Kang, L., Sun, X., Zhang, C., Zhang, X., Chen, J. The mechanism and kinetic model on the OH-initiated degradation of acetofenate in the atmosphere. Atmos. Environ. 2015, 103, 357e364; https://doi.org/10.1016/j.atmosenv.2014.12.061.Search in Google Scholar
9. Zhang, C., Yang, W., Bai, J., Zhao, Y., Gong, C., Sun, X., Zhang, Q., Wang, W. Mechanism and kinetic study on the gas-phase reactions of OH radical with carbamate insecticide isoprocarb. Atmos. Environ. 2012, 60, 460e466; https://doi.org/10.1016/j.atmosenv.2012.07.015.Search in Google Scholar
10. Evich, M. G., Davis, M. J. B., McCord, J. P., Acrey, B., Awkerman, J. A., Knappe, D. R. U., Lindstrom, A. B., Speth, T. F., Tebes-Stevens, C., Strynar, M. J., Wang, Z., Weber, E. J., Henderson, W. M., Washington, J. W. Per- and polyfluoroalkyl substances in the environment. Science 2022, 375, eabg9065; https://doi.org/10.1126/science.abg9065.Search in Google Scholar PubMed PubMed Central
11. Latorse, M. P., Holah, D., Bardsley, R. Fungicidal properties of fluopicolide-based products. Pflanzenschutz-Nachr. Bayer 2006, 59, 185–200.Search in Google Scholar
12. Jeschke, P. Progress of modern agricultural chemistry and future prospects. Pest. Manag. Sci. 2016, 72, 433–455; https://doi.org/10.1002/ps.4190.Search in Google Scholar PubMed
13. Toquin, V., Barja, F., Sirven, C., Gamet, S., Latorse, M. P., Zundel, J. L., Schmitt, F., Beffa, R. A new mode of action for fluopicolide: modification of the cellular localization of a spectrin-like protein. Pflanzenschutz-Nachr. Bayer 2006, 59, 171–184.Search in Google Scholar
14. Shi, K., Li, W., Yuan, L., Li, L., Liu, F. Dissipation, terminal residues and risk assessment of fluopicolide and its metabolite in cucumber under field conditions. Environ. Monit. Assess 2015, 187, 1–8; https://doi.org/10.1007/s10661-015-4924-5.Search in Google Scholar PubMed
15. Xu, T., Feng, X., Pan, L., Jing, J., Zhang, H. Residue and risk assessment of fluopicolide and cyazofamid in grapes and soil using LC-MS/MS and modified QuEChERS. RSC Adv. 2018, 8, 35485–35495; https://doi.org/10.1039/c8ra06956e.Search in Google Scholar PubMed PubMed Central
16. Robatscher, P., Eisenstecken, D., Innerebner, G., Roschatt, C., Raifer, B., Rohregger, H., Hafner, H., Oberhuber, M. 3 chloro-5-trifluoromethylpyridine-2-carboxylic acid, a metabolite of the fungicide fluopyram, causes growth disorder in vitisvinifera. J. Agric. Food Chem. 2019, 67, 7223–7231; https://doi.org/10.1021/acs.jafc.8b05567.Search in Google Scholar PubMed
17. Tao, Y., Han, L., Li, X., Han, Y., Liu, Z. Molecular structure, spectroscopy (FT-IR, FT-Raman), thermodynamic parameters, molecular electrostatic potential and HOMO-LUMO analysis of 2, 6-dichlorobenzamide. J. Mol. Struct. 2016, 1108, 307e314; https://doi.org/10.1016/j.molstruc.2015.12.031.Search in Google Scholar
18. Suchetan, P. A., Suresha, E., Naveenb, S., Lokanathc, N. K. Crystal structures of 3-fluoro-N-[2-(trifluoromethyl)phenyl]benzamide, 3-bromo-N-[2-(trifluoromethyl)phenyl]benzamide and 3-iodo-N-[2-(trifluoromethyl)phenyl]benzamide. Acta Crystallogr. 2016, E72, 819–823; https://doi.org/10.1107/s2056989016007866.Search in Google Scholar PubMed PubMed Central
19. NIST Chemistry WebBook. NIST Standard Reference Database Number 69, Last update to data 2021. http://webbook.nist.gov/chemistry.Search in Google Scholar
20. Vural, H. Experimental and computational studies of 4-(Trifluoromethyl)pyridine-2-carboxylic acid. J. Mol. Struct. 2016, 1111, 55–60; https://doi.org/10.1016/j.molstruc.2016.01.076.Search in Google Scholar
21. Betz, R., Gerber, T. 2-(Trifluoromethyl)benzoic acid. Acta Crystallogr. 2011, E67, o907; https://doi.org/10.1107/s1600536811009597.Search in Google Scholar PubMed PubMed Central
22. Avcı, D., Altürk, S., Tamer, O., Kusbazoglu, M., Atalay, Y. Solvent effect in implicit/explicit model on FT-IR, 1H, 13C and 19F NMR, UV-vis and fluorescence spectra, linear, second- and third-nonlinear optical parameters of 2e(trifluoromethyl)benzoic acid: experimental and computational study. J. Mol. Struct. 2017, 1143, 116e126.10.1016/j.molstruc.2017.04.080Search in Google Scholar
23. Balachandran, V., Karpagam, V., Santhi, G., Revathi, B., Ilango, G., Kavimani, M. Conformational stability, vibrational (FT-IR and FT-Raman) spectra and computational analysis of m-trifluoromethyl benzoic acid. Spectr. Acta A: Mol. Biomol. Spectroscopy 2015, 137, 165–175; https://doi.org/10.1016/j.saa.2014.08.086.Search in Google Scholar PubMed
24. Villaverdea, J. J., Sandín-España, P., Alonso-Prados, J. L., Lamsabhi, A. M., Alcamí, M. Pesticide byproducts formation: theoretical study of the protonation of alloxydim degradation products. Comput. Theor. Chem. 2018, 1143, 9–19; https://doi.org/10.1016/j.comptc.2018.08.006.Search in Google Scholar
25. Ponnusamy, S., Sandhiya, L., Senthilkumar, K. Reaction mechanism and kinetics of the degradation of terbacil initiated by OH radical – a theoretical study. Chem. Phys. 2018, 501, 110–120; https://doi.org/10.1016/j.chemphys.2017.12.013.Search in Google Scholar
26. Xu, X., Goddard, W. A.III The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties. Proc. Natl. Acad. Sci. 2004, 101, 2673–2677; https://doi.org/10.1073/pnas.0308730100.Search in Google Scholar PubMed PubMed Central
27. Becke, A. D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652; https://doi.org/10.1063/1.464913.Search in Google Scholar
28. Schmider, H. L., Becke, A. D. Optimized density functionals from the extended G2 test set. J. Chem. Phys. 1998, 108, 9624–9631; https://doi.org/10.1063/1.476438.Search in Google Scholar
29. Boese, A. D., Martin, J. M. L. Development of density functionals for thermochemical kinetics. J. Chem. Phys. 2004, 121, 3405–3416; https://doi.org/10.1063/1.1774975.Search in Google Scholar PubMed
30. Zhao, Y., Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, non-covalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241; https://doi.org/10.1007/s00214-007-0310-x.Search in Google Scholar
31. Adamo, C., Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 1999, 110, 6158–6169; https://doi.org/10.1063/1.478522.Search in Google Scholar
32. Zhao, Y., Truhlar, D. G. Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J. Phys. Chem. A 2004, 108, 6908–6918; https://doi.org/10.1021/jp048147q.Search in Google Scholar
33. Yu, H. S., He, X., Li, S. L., Truhlar, D. G. MN15: a Kohn-Sham global-hybrid exchange-correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 2016, 7, 5032–5051; https://doi.org/10.1039/c6sc00705h.Search in Google Scholar PubMed PubMed Central
34. Zhao, Y., Truhlar, D. G. Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2008, 4, 1849–1868; https://doi.org/10.1021/ct800246v.Search in Google Scholar PubMed
35. Curtiss, L. A., Redfern, P. C., Raghavachari, K. Gaussian-4 theory using reduced order perturbation theory. J. Chem. Phys. 2007, 127, 124105–124108; https://doi.org/10.1063/1.2770701.Search in Google Scholar PubMed
36. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A.Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford CT, 2016.Search in Google Scholar
37. Jamróz, M. H. Vibrational Energy Distribution Analysis: VEDA 4, Program: Warsaw, 2004–2010. http://www.smmg.pl.Search in Google Scholar
38. Benson, S. W., Cruickshank, F. R., Golden, D. M., Haugen, G. R., O’Neal, H. E., Rodgers, A. S., Shaw, R., Walsh, R. Additivity rules for the estimation of thermochemical properties. Chem. Rev. 1969, 69, 279–324; https://doi.org/10.1021/cr60259a002.Search in Google Scholar
39. Rauf, M., Badshah, A., Bolte, M., Saeed, A. 2,6-Dichlorobenzamide. Acta Crystallogr. 2006, E62, o1070–o1071; https://doi.org/10.1107/s1600536806005289.Search in Google Scholar
40. Blake, C. C. F., Small, R. W. H. The crystal structure of benzamide. Acta Crystallogr. 1972, B28, 2201–2206; https://doi.org/10.1107/s0567740872005801.Search in Google Scholar
41. Gao, Q., Jeffrey, G. A., Ruble, J. R., McMullan, R. K. A single-crystal neutron diffraction refinement of benzamide at 15 and 123 K. Acta Crystallogr. 1991, B47, 742–745; https://doi.org/10.1107/s0108768191002884.Search in Google Scholar
42. Yoshida, S. Infrared spectra of benzamide, its p-substituted derivatives, pyridinecarboxylic acid amides and pyrazinamide. Chem. Pharm. Bull. 1963, 11, 628–638; https://doi.org/10.1248/cpb.11.628.Search in Google Scholar
43. Kovács, A., Hargittai, I. Hydrogen bonding in 2-trifluoromethylresorcinol and 2,6-bis(trifluoromethyl)phenol and its geometrical consequences. J. Mol. Struct. (Theochem) 1998, 455, 229–238; https://doi.org/10.1016/s0166-1280(98)00101-8.Search in Google Scholar
44. Steiner, T. Hydrogen-bond distances to halide ions in organic and organometallic crystal structures: up-to-date database study. Acta Crystallogr. 1998, B54, 456–463; https://doi.org/10.1107/s0108768197014821.Search in Google Scholar
45. Kovács, A., Macsári, I., Hargittai, I. Intramolecular hydrogen bonding in fluorophenol derivatives: 2-fluorophenol, 2,6-difluorophenol, and 2,3,5,6-tetrafluorohydroquinone. J. Phys. Chem. A 1999, 103, 3110–3114; https://doi.org/10.1021/jp984493u.Search in Google Scholar
46. Schneider, H.-J. Hydrogen bonds with fluorine Studies in solution, in gas phase and by computations, conflicting conclusions from crystallographic analyses. Chem. Sci. 2012, 3, 1381–1394; https://doi.org/10.1039/c2sc00764a.Search in Google Scholar
47. Krátký, M., Vinšová, J. Antifungal activity of salicylanilides and their esters with 4-(trifluoromethyl)benzoic acid. Molecules 2012, 17, 9426–9442; https://doi.org/10.3390/molecules17089426.Search in Google Scholar PubMed PubMed Central
48. Kim, S. W., Lee, H. K., Kim, I. D., Lee, H., Luo, L., Park, J. Y., Yoon, S. H., Lee, J. K. Robust neuroprotective effects of 2-((2-oxopropanoyl)oxy)-4-(trifluoromethyl)benzoic acid (OPTBA), a HTB/pyruvate ester, in the post ischemic rat brain. Sci. Rep. 2016, 6, 1–12; https://doi.org/10.1038/srep31843.Search in Google Scholar PubMed PubMed Central
49. Mardis, K. L., Brune, B. J., Vishwanath, P., Giorgis, B., Payne, G. F., Gilson, M. K. Intramolecular versus intermolecular hydrogen bonding in the adsorption of aromatic alcohols onto an acrylic ester sorbent. J. Phys. Chem. B 2000, 104, 4735–4744; https://doi.org/10.1021/jp993531m.Search in Google Scholar
50. Tan, S., Feng, G. B., Chena, X. J., Shang, Z. H. 3-Chloro-5-(trifluoromethyl)pyridin-2-amine. Acta Crystallogr. 2008, E64, o430; https://doi.org/10.1107/s1600536807060205.Search in Google Scholar
51. Khan, M. H., Khana, I. U., Akkurt, M. 4-Amino-2-chlorobenzoic acid. Acta Crystallogr. 2011, E67, o2247; https://doi.org/10.1107/s1600536811030728.Search in Google Scholar
52. Varsányi, G. Vibrational Spectra of Benzene Derivatives; Academic Press: New York, 1969.10.1016/B978-0-12-714950-9.50007-7Search in Google Scholar
53. Tammer, M., Sokrates, G. Infrared and Raman characteristic group frequencies: tables and charts. Colloid Polym. Sci. 2004, 283, 235; https://doi.org/10.1007/s00396-004-1164-6.Search in Google Scholar
54. Benson, S. W. Thermochemical Kinetics, 2nd ed.; Wiley: New York, 1976.Search in Google Scholar
55. Hehre, W. J., Radom, L., Schleyer, P. v. R., Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.Search in Google Scholar
56. Berry, R. J., Burgess, D. R. F.Jr., Nyden, M. R., Zachariah, M. R., Schwartz, M. Halon thermochemistry: ab initio calculations of the enthalpies of formation of fluoromethanes. J. Phys. Chem. 1995, 99, 17145–17150; https://doi.org/10.1021/j100047a017.Search in Google Scholar
57. Burkholder, J. B., Sander, S. P., Abbatt, J., Barker, J. R., Cappa, C., Crounse, J. D., Dibble, T. S., Huie, R. E., Kolb, C. E., Kurylo, M. J., Orkin, V. L., Percival, C. J., Wilmouth, D. M., Wine, P. H. Chemical kinetics and photochemical data for use in atmospheric studies, evaluation No. 19, JPL Publication 19-5, Jet Propulsion Laboratory, Pasadena, 2019. http://jpldataeval.jpl.nasa.gov.Search in Google Scholar
58. Ruscic, B., Bross, D. H. Active Thermochemical Tables (ATcT) Values Based on ver. 1.124 of the Thermochemical Network; Argonne National Laboratory: Lemont, Illinois, 2022. http://ATcT.anl.gov.Search in Google Scholar
59. Badenes, M. P., Bracco, L. L. B., Cobos, C. J. Theoretical study of the equilibrium structure, vibrational spectrum, and thermochemistry of the peroxynitrate CF2BrCFBrOONO2. J. Phys. Chem. A 2011, 115, 7744–7752; https://doi.org/10.1021/jp2018617.Search in Google Scholar PubMed
60. Badenes, M. P., Tucceri, M. E., Cobos, C. J. Theoretical study of the molecular conformations, vibrational frequencies and thermochemistry of the FC(O)OOO(O)CF, FS(O2)OOO(O2)SF and FC(O)OOO(O2)SF trioxides. Comp. Theor. Chem. 2013, 1009, 86–93; https://doi.org/10.1016/j.comptc.2012.12.025.Search in Google Scholar
61. Holmes, J. L., Aubry, C. Group additivity values for estimating the enthalpy of formation of organic compounds: an update and reappraisal. 1. C, H, and O. J. Phys. Chem. A 2011, 115, 10576–10586; https://doi.org/10.1021/jp202721k.Search in Google Scholar PubMed
62. Holmes, J. L., Aubry, C. Group additivity values for estimating the enthalpy of formation of organic compounds: an update and reappraisal. 2. C, H, N, O, S, and halogens. J. Phys. Chem. A 2012, 116, 7196–7209; https://doi.org/10.1021/jp303780m.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0204).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Structural characteristics and visible-light-driven photocatalytic of ZnO@octahedral NiFe2O4 microcrystal prepared via thermal decomposition process
- Photocatalytic degradation of textile dyes laden industrial wastewater using fabricated bismuth ferrite coated nickel/nickel oxide foam
- Manganese doped Co3O4/rGO nanocomposite: synthesis, characterisation and visible light irradiated photocatalytic degradation of methylene blue studies
- Green ionic liquids with high corrosion inhibition of steel rebars in cement pore solution
- Electrocatalysis of formic acid oxidation on Pt–Ru alloys modified with Pb adatoms
- Kinetic studies of catalytic and antioxidant activities of biosynthesized franklinite (ZnFe2O4) nanoparticles using Coriandrum sativum leaf extract
- A computational study of the conformational stability, vibrational spectra, and thermochemical properties of 2,6-dichlorobenzamide, 2-(trifluoromethyl)benzamide, 2-(trifluoromethyl)benzoic acid, and 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid
- Elucidating the efficacy of plant-derived triterpenoids for treating urinary tract infections: insights from experimental investigation, quantum chemical analysis, and molecular docking
- Exploring the anticancer potential of sulfate-hydroxy-butanone derivatives: insights from experimental and quantum chemical investigations
- Towards sustainable water purification: MOFs as a promising solution to eliminate toxic water pollutant resorcinol
Articles in the same Issue
- Frontmatter
- Original Papers
- Structural characteristics and visible-light-driven photocatalytic of ZnO@octahedral NiFe2O4 microcrystal prepared via thermal decomposition process
- Photocatalytic degradation of textile dyes laden industrial wastewater using fabricated bismuth ferrite coated nickel/nickel oxide foam
- Manganese doped Co3O4/rGO nanocomposite: synthesis, characterisation and visible light irradiated photocatalytic degradation of methylene blue studies
- Green ionic liquids with high corrosion inhibition of steel rebars in cement pore solution
- Electrocatalysis of formic acid oxidation on Pt–Ru alloys modified with Pb adatoms
- Kinetic studies of catalytic and antioxidant activities of biosynthesized franklinite (ZnFe2O4) nanoparticles using Coriandrum sativum leaf extract
- A computational study of the conformational stability, vibrational spectra, and thermochemical properties of 2,6-dichlorobenzamide, 2-(trifluoromethyl)benzamide, 2-(trifluoromethyl)benzoic acid, and 3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid
- Elucidating the efficacy of plant-derived triterpenoids for treating urinary tract infections: insights from experimental investigation, quantum chemical analysis, and molecular docking
- Exploring the anticancer potential of sulfate-hydroxy-butanone derivatives: insights from experimental and quantum chemical investigations
- Towards sustainable water purification: MOFs as a promising solution to eliminate toxic water pollutant resorcinol