Abstract
Most coal-fired industrial flue gases contained low concentration CO. How to deal with it effectively was a research hotspot in recent years. Catalytic oxidation was considered as the most promising method in the 21st century for the removement of CO with the high efficiency, environmentally friendly, easy to operate and low cost. In this review, the reaction mechanisms of CO oxidation were described, which could provide ideas for the development of new catalysts. The effects of supports and preparation methods on catalysts activity was also reviewed systematically. In addition, some suggestions and outlooks were provided for future development of CO catalytic oxidation.
Funding source: Natural Science Basic foundation of China
Award Identifier / Grant number: 52174325
Funding source: Development Program of Shaanxi
Award Identifier / Grant number: 2020GY-166, 2020GY-247
-
Research ethics: Not applicable.
-
Author contributions: Zhenghua Shen wrote the review paper. Xiangdong Xing supervised the work and revised the paper. Sunxuan Wang, Shan Ren and Zhaoying Zheng help in write up of the paper. Final proof reading was done by Ming Lv and Xu Jiang. All authors have read and agreed to the published version of the manuscript.
-
Competing interests: The authors declare no conflicts of interest regarding this article.
-
Research funding: The present work was financially supported by the Natural Science Basic Foundation of China (Program No. 52174325) and Development Program of Shaanxi (Grant No. 2020GY-166 and Program No. 2020GY-247). The authors gratefully acknowledge their support.
-
Data availability: All relevant data are within the paper.
References
1. Ma, C. Q., Liu, B. P., Yan, S. H. Enhanced Catalytic Activity for CO Oxidation by Fe-Adsorbing on BN Under Mild Condition: A Promising Single-Atom Catalyst. Mol. Catal. 2020, 495, 111165. https://doi.org/10.1016/j.mcat.2020.111165.Search in Google Scholar
2. Waqas, M., Kouotou, P. M., El Kasmi, A., Wang, Y., Tian, Z. Y. Role of Copper Grid Mesh in the Catalytic Oxidation of CO Over One-Step Synthesized Cu–Fe–Co Ternary Oxides Thin Film. Chin. Chem. Lett. 2019, 31(5), 1201–1206. https://doi.org/10.1016/j.cclet.2019.06.042.Search in Google Scholar
3. Tang, X. Y., Wang, J. C., Ma, Y. H., Li, J., Zhang, X. L., Liu, B. D. Low-Temperature and Stable CO Oxidation of Co3O4/TiO2 Monolithic Catalysts. Chin. Chem. Lett. 2021, 32(1), 48–52. https://doi.org/10.1016/j.cclet.2020.11.008.Search in Google Scholar
4. Palma, V., Goodall, R., Thompson, A., Ruocco, C., Renda, S., Leach, R., Martino, M. Ceria-Coated Replicated Aluminium Sponges as Catalysts for the CO-Water Gas Shift Process. Int. J. Hydrogen Energy 2021, 46(22), 12158–12168. https://doi.org/10.1016/j.ijhydene.2020.04.065.Search in Google Scholar
5. Li, Z. H., Zhang, X., Liu, J. J., Shi, R., Waterhouse, G. I. N., Wen, X. D., Zhang, T. R. Titania-Supported Ni2P/Ni Catalysts for Selective Solar-Driven CO Hydrogenation. Adv. Mater. 2021, 33(36), 2103248. https://doi.org/10.1002/adma.202103248.Search in Google Scholar PubMed
6. Park, E. D., Lee, D., Lee, H. C. Recent Progress in Selective CO Removal in a H2-Rich Stream. Catal. Today 2009, 139(4), 280–290. https://doi.org/10.1016/j.cattod.2008.06.027.Search in Google Scholar
7. Bakhoum, E. G., Cheng, M. H. M. Miniature Carbon Monoxide Detector Based on Nanotechnology. IEEE Trans. Instrum. Meas. 2013, 62(1), 240–245. https://doi.org/10.1109/TIM.2012.2212507.Search in Google Scholar
8. Liang, M., Zhang, G., Li, R. L., Feng, Y. J., Wang, J. M., Hou, P. Green Synthesis of Au–Ag Alloy Nanoparticles Using Lysimachia Christinae Polysaccharide and Its Application for Reducing CO in Cigarette Mainstream Smoke. Micro Nano Lett. 2019, 14(8), 865–867. https://doi.org/10.1049/mnl.2018.5594.Search in Google Scholar
9. Al Soubaihi, R. M., Saoud, K. M., Dutta, J. Critical Review of Low-Temperature CO Oxidation and Hysteresis Phenomenon on Heterogeneous Catalysts. Catalysts 2018, 8(12), 660. https://doi.org/10.3390/catal8120660.Search in Google Scholar
10. Arun, P. S., Ranjith, B. P., Shibli, S. M. A. Control of Carbon Monoxide (CO) from Automobile Exhaust by a Dealuminated Zeolite Supported Regenerative MnCo2O4 Catalyst. Environ. Sci. Technol. 2013, 47(6), 2746–2753. https://doi.org/10.1021/es303992j.Search in Google Scholar PubMed
11. Kim, Y. H., Park, J. E., Lee, H. C., Choi, S. H., Park, E. D. Active Size-Controlled Ru Catalysts for Selective CO Oxidation in H2. Appl. Catal. B Environ. 2012, 127, 129–136. https://doi.org/10.1016/j.apcatb.2012.08.010.Search in Google Scholar
12. Qadir, K., Kim, S. M., Seo, H., Mun, B. S., Akgul, F. A., Liu, Z., Park, J. Y. Deactivation of Ru Catalysts Under Catalytic CO Oxidation by Formation of Bulk Ru Oxide Probed with Ambient Pressure XPS. J. Phys. Chem. C 2013, 117(25), 13108–13113. https://doi.org/10.1021/jp402688a.Search in Google Scholar
13. Niu, T., Wang, C. X., Zhang, L. H., Liu, Y. Potassium Promoted Ru/Meso-Macroporous SiO2 Catalyst for the Preferential Oxidation of CO in H2-Rich Gases. Int. J. Hydrogen Energy 2013, 38(19), 7801–7810. https://doi.org/10.1016/j.ijhydene.2013.03.150.Search in Google Scholar
14. Li, L., Zeng, X. C. Direct Simulation Evidence of Generation of Oxygen Vacancies at the Golden Cage Au-16 and TiO2 (110) Interface for CO Oxidation. J. Am. Chem. Soc. 2014, 136(45), 15857–15860. https://doi.org/10.1021/ja508666a.Search in Google Scholar PubMed
15. Zhao, Y. L., Zhang, X. L., Yang, Z. X. Activation Mechanisms of Silver Toward CO Oxidation by Tungsten Carbide Substrate: A Density Functional Theory Study. Phys. Lett. A 2019, 383(20), 2436–2442. https://doi.org/10.1016/j.physleta.2019.04.062.Search in Google Scholar
16. Wang, Y., Zhang, X. L., Cheng, C., Yang, Z. X. TiC Supported Single-Atom Platinum Catalyst for CO Oxidation: A Density Functional Theory Study. Appl. Surf. Sci. 2018, 453, 159–165. https://doi.org/10.1016/j.apsusc.2018.05.053.Search in Google Scholar
17. Hoffmann, F. M., Weisel, M. D., Peden, C. H. F. In-Situ FT-IRAS Study of the CO Oxidation Reaction Over Ru(001): II. Coadsorption of Carbon Monoxide and Oxygen. Surf. Sci. 1991, 253(1–3), 59–71. https://doi.org/10.1016/0039-6028(91)90581-C.Search in Google Scholar
18. Berlowitz, P. J., Peden, C., Goodman, D. W. Kinetics of CO Oxidation on Single-Crystal Pd, Pt, and Ir. J. Phys. Chem. 1988, 92(18), 5213–5221. https://doi.org/10.1021/j100329a030.Search in Google Scholar
19. Du, C. M., Lin, H. P., Lin, B., Ma, Z. Y., Hou, T. J., Tang, J. X., Li, Y. Y. MoS2 Supported Single Platinum Atoms and Their Superior Catalytic Activity for CO Oxidation: A Density Functional Theory Study. J. Mater. Chem. A 2015, 3(46), 23113–23119. https://doi.org/10.1039/c5ta05084g.Search in Google Scholar
20. Li, Y. Z., Yu, Y., Wang, J. G., Song, J., Li, Q., Dong, M. D., Liu, C. J. CO Oxidation Over Graphene Supported Palladium Catalyst. Appl. Catal. B Environ. 2012, 125, 189–196. https://doi.org/10.1016/j.apcatb.2012.05.023.Search in Google Scholar
21. Yang, F., Graciani, J., Evans, J., Liu, P., Hrbek, J., Sanz, J. F., Rodriguez, J. A. CO Oxidation on Inverse CeOx/Cu(111) Catalysts: High Catalytic Activity and Ceria-Promoted Dissociation of O2. J. Am. Chem. Soc. 2011, 133(10), 3444–3451. https://doi.org/10.1021/ja1087979.Search in Google Scholar PubMed
22. Mars, P., Krevelen, D. W. V. Oxidations Carried Out by Means of Vanadium Oxide Catalysts. Chem. Eng. Sci. 1954, 3(Suppl. S1), 41–59. https://doi.org/10.1016/S0009-2509(54)80005-4.Search in Google Scholar
23. Sedmak, G., Hočevar, S., Levec, J. Kinetics of Selective CO Oxidation in Excess of H2 Over the Nanostructured Cu0.1Ce0.9O2−y Catalyst. J. Catal. 2003, 213(2), 135–150. https://doi.org/10.1016/S0021-9517(02)00019-2.Search in Google Scholar
24. Saqlain, M. A., Hussain, A., Siddiq, M., Leitao, A. A. A DFT Plus U Study of the Mars Van Krevelen Mechanism of CO Oxidation on Au/TiO2 Catalysts. Appl. Catal. A Gen. 2016, 519, 27–33. https://doi.org/10.1016/j.apcata.2016.03.021.Search in Google Scholar
25. Lu, R., He, L., Wang, Y., Gao, X. Q., Li, W. C. Promotion Effects of Nickel-Doped Al2O3-Nanosheet-Supported Au Catalysts for CO Oxidation. Chin. J. Catal. 2020, 41(2), 350–356. https://doi.org/10.1016/S1872-2067(19)63439-X.Search in Google Scholar
26. Wang, G. W., Jiang, Y. X., Zhang, S., Zhu, X. L., Shan, H. H. Insight into the Active Co Phase of Co/Al2O3 Catalyst for Ethane Dehydrogenation. Catal. Lett. 2022, 152, 2971–2979. https://doi.org/10.1007/s10562-021-03883-3.Search in Google Scholar
27. Chai, S. J., Bai, X. Q., Li, J., Liu, C., Ding, T., Tian, Y., Liu, C., Xian, H., Mi, W. B., Li, X. G. Effect of Phase Interaction on Catalytic CO Oxidation Over the SnO2/Al2O3 Model Catalyst. Appl. Surf. Sci. 2017, 402, 12–20. https://doi.org/10.1016/j.apsusc.2017.01.058.Search in Google Scholar
28. Bae, J. S., Park, J. W., Kim, J. H., Lee, J. G., Kim, Y., Han, C. CO Oxidation from Syngas (CO and H2) Using Nanoporous Pt/Al2O3 Catalyst. Korean J. Chem. Eng. 2010, 27(5), 1458–1461. https://doi.org/10.1007/s11814-010-0248-x.Search in Google Scholar
29. Nyathi, T. M., Fadlalla, M. I., Fischer, N., York, A. P. E., Olivier, E. J., Gibson, E. K., Wells, P. P., Claeys, M. Support and Gas Environment Effects on the Preferential Oxidation of Carbon Monoxide Over Co3O4 Catalysts Studied In Situ. Appl. Catal. B Environ. 2021, 297, 120450. https://doi.org/10.1016/j.apcatb.2021.120450.Search in Google Scholar
30. Shen, L. M., Zhang, C., Liu, Y. Meso-Macroporous Al2O3 Supported Ru Catalysts for CO Preferential Oxidation in Hydrogen-Rich Gases. J. Nat. Gas Chem. 2012, 21(6), 653–660. https://doi.org/10.1016/S1003-9953(11)60416-7.Search in Google Scholar
31. Li, Y. L., Han, W. L., Dong, F., Zong, L. Y., Tang, Z. C., Zhang, J. Y. Controlled Pore Size of Ordered Mesoporous Al2O3-Supported Mn/Cu Catalysts for CO Oxidation. Microporous Mesoporous Mater. 2017, 249, 1–9. https://doi.org/10.1016/j.micromeso.2017.04.046.Search in Google Scholar
32. Du, G., Lim, S., Pinault, M., Fang, F., Pfefferle, L., Haller, G. L. Synthesis, Characterization, and Catalytic Performance of Highly Dispersed Vanadium Grafted SBA-15 Catalyst. J. Catal. 2008, 253(1), 74–90. https://doi.org/10.1016/j.jcat.2007.10.019.Search in Google Scholar
33. Gao, D. W., Zheng, A. M., Zhang, X., Sun, H., Dai, X. P., Yang, Y., Wang, H., Qin, Y. C., Xu, S. T., Duan, A. J. Mercaptosilane-Assisted Synthesis of Sub-Nanosized Pt Particles Within Hierarchically Porous ZSM-5/SBA-15 Materials and Their Enhanced Hydrogenation Properties. Nanaoscale, 2015, 7(25), 10918–10924. https://doi.org/10.1039/c5nr02749g.Search in Google Scholar PubMed
34. Mamontov, G. V., Gorbunova, A. S., Vyshegorodtseva, E. V., Zaikovskii, V. I., Vodyankina, O. V. Selective Oxidation of CO in the Presence of Propylene Over Ag/MCM-41 Catalyst. Catal. Today 2019, 333, 245–250. https://doi.org/10.1016/j.cattod.2018.05.015.Search in Google Scholar
35. Guila, G., Gracia, F., Araya, P. CuO and CeO2 Catalysts Supported on Al2O3, ZrO2, and SiO2 in the Oxidation of CO at Low Temperature. Appl. Catal. A Gen. 2008, 343(1–2), 16–24. https://doi.org/10.1016/j.apcata.2008.03.015.Search in Google Scholar
36. Grundy, A. N., Chen, M., Gauckler, L. J., Hallstedt, B. Assessment of the La–Mn–O System. J. Phase Equilibria Diffus. 2005, 26(2), 131–151. https://doi.org/10.1007/s11669-005-0132-2.Search in Google Scholar
37. Galarneau, A., Cambon, H., Renzo, F. D., Fajula, F. True Microporosity and Surface Area of Mesoporous SBA-15 Silicas as a Function of Synthesis Temperature. Langmuir 2001, 17(26), 8328–8335. https://doi.org/10.1021/la0105477.Search in Google Scholar
38. Chen, C. S., Lai, Y. T., Chen, T. C., Chen, C. H., Lee, J. F., Hsu, C. W., Kao, H. M. Synthesis and Characterization of Pt Nanoparticles with Different Morphologies in Mesoporous Silica SBA-15 for Methanol Oxidation Reaction. Nanoscale 2014, 6(21), 12644–12654. https://doi.org/10.1039/c4nr03624g.Search in Google Scholar PubMed
39. Todorova, S., Blin, J. L., Naydenov, A., Lebeau, B., Kolev, H., Gaudin, P., Dotzeva, A., Velinova, R., Filkova, D., Ivanova, I., Vidal, L., Michelin, L., Josien, L., Tenchev, K. Co3O4–MnOx Oxides Supported on SBA-15 for CO and VOCs Oxidation. Catal. Today 2020, 357, 602–612. https://doi.org/10.1016/j.cattod.2019.05.018.Search in Google Scholar
40. Tian, D., Chen, Y. H., Lu, X. Y., Ling, Y. H., Lin, B. Facile Preparation of Mesoporous MCM-48 Containing Silver Nanoparticles with Fly Ash as Raw Materials for CO Catalytic Oxidation. Micromachines 2021, 12(7), 841. https://doi.org/10.3390/mi12070841.Search in Google Scholar PubMed PubMed Central
41. Luo, M. M., Liang, Z., Liu, C., Qi, X. P., Chen, M. W., Yang, H., Liang, T. X. Density Functional Study on the CO Oxidation Reaction Mechanism on MnN2-Doped Graphene. RSC Adv. 2020, 10(46), 27856–27863. https://doi.org/10.1039/d0ra05287f.Search in Google Scholar PubMed PubMed Central
42. Li, W. C., Zhang, H. H., Wang, J. T., Qiao, W. M., Ling, L. C., Long, D. H. Flexible Ru/Graphene Aerogel with Switchable Surface Chemistry: Highly Efficient Catalyst for Room-Temperature CO Oxidation. Adv. Mater. Interfaces 2016, 3(10), 1500711. https://doi.org/10.1002/admi.201500711.Search in Google Scholar
43. Lu, J., Deng, C. H., Zhang, X. M., Yang, P. Y. Synthesis of Fe3O4/Graphene/TiO2 Composites for the Highly Selective Enrichment of Phosphopeptides from Biological Samples. ACS Appl. Mater. Interfac. 2013, 5(15), 7330–7334. https://doi.org/10.1021/am401662b.Search in Google Scholar PubMed
44. Xi, Y. J., Heyden, A. Preferential Oxidation of CO in Hydrogen at Nonmetal Active Sites with High Activity and Selectivity. ACS Catal. 2020, 10(9), 5362–5370. https://doi.org/10.1021/acscatal.0c00743.Search in Google Scholar
45. Wang, H. B., Liu, J. X., Guo, J. H., Ou, X. D., Wang, X. K., Chen, G. Novel Joint Catalytic Properties of Fe and N Co-Doped Graphene for CO Oxidation. Phys. Chem. Chem. Phys. 2020, 22(48), 28376–28382. https://doi.org/10.1039/d0cp05683a.Search in Google Scholar PubMed
46. Dong, F., Zhao, Y., Han, W., Zhao, H., Lu, G., Tang, Z. Co Nanoparticles Anchoring Three Dimensional Graphene Lattice as Bifunctional Catalyst for Low-Temperature CO Oxidation. Mol. Catal. 2017, 439, 118–127. https://doi.org/10.1016/j.mcat.2017.06.022.Search in Google Scholar
47. Pan, X. L., Bao, X. H. The Effects of Confinement Inside Carbon Nanotubes on Catalysis. Accounts Chem. Res. 2011, 44(8), 553–562. https://doi.org/10.1021/ar100160t.Search in Google Scholar PubMed
48. Shi, L. M., Zhang, G., Wang, Y. J. Tailoring Catalytic Performance of Carbon Nanotubes Confined CuO CeO2 Catalysts for CO Preferential Oxidation. Int. J. Hydrogen Energy 2018, 43(39), 18211–18219. https://doi.org/10.1016/j.ijhydene.2018.08.020.Search in Google Scholar
49. Li, B. D., Chao, W., Yi, G. Q., Lin, H. Q., Yuan, Y. Z. Enhanced Performance of Ru Nanoparticles Confined in Carbon Nanotubes for CO Preferential Oxidation in a H2-Rich Stream. Catal. Today 2011, 164(1), 74–79. https://doi.org/10.1016/j.cattod.2010.10.020.Search in Google Scholar
50. Menon, M., Andriotis, A. N., Froudakis, G. E. Curvature Dependence of the Metal Catalyst Atom Interaction with Carbon Nanotubes Walls. Chem. Phys. Lett. 2000, 320(5–6), 425–434. https://doi.org/10.1016/S0009-2614(00)00224-4.Search in Google Scholar
51. Wang, L. C., Liu, Q., Huang, X. S., Liu, Y. M., Yong, C., Fan, K. N. Gold Nanoparticles Supported on Manganese Oxides for Low-Temperature CO Oxidation. Appl. Catal. B Environ. 2009, 88(1–2), 204–212. https://doi.org/10.1016/j.apcatb.2008.09.031.Search in Google Scholar
52. Min, B. K., Friend, C. M. Heterogeneous Gold-Based Catalysis for Green Chemistry: Low-Temperature CO Oxidation and Propene Oxidation. Chem. Rev. 2007, 107(37), 2709–2724. https://doi.org/10.1021/cr050954d.Search in Google Scholar PubMed
53. Wang, C., Cheng, Q. P., Wang, X. L., Ma, K., Bai, X. Q., Tan, S. R., Tian, Y., Ding, T., Zheng, L. R., Zhang, J., Li, X. G. Enhanced Catalytic Performance for CO Preferential Oxidation Over CuO Catalysts Supported on Highly Defective CeO2 Nanocrystals. Appl. Surf. Sci. 2017, 422, 932–943. https://doi.org/10.1016/j.apsusc.2017.06.017.Search in Google Scholar
54. Venezia, A. M., Pantaleo, G., Longo, A., Di Carlo, G., Casaletto, M. P., Liotta, F. L., Deganello, G. Relationship Between Structure and CO Oxidation Activity of Ceria-Supported Gold Catalysts. J. Phys. Chem. B 2005, 109(7), 2821–2827. https://doi.org/10.1021/jp045928i.Search in Google Scholar PubMed
55. Gaenzler, A. M., Casapu, M., Doronkin, D. E., Maurer, F., Lott, P., Glatzel, P., Votsmeier, M., Deutschmann, O., Grunwaldt, J. D. Unravelling the Different Reaction Pathways for Low Temperature CO Oxidation on Pt/CeO2 and Pt/Al2O3 by Spatially Resolved Structure-Activity Correlations. J. Phys. Chem. Lett. 2019, 10(24), 7698–7705. https://doi.org/10.1021/acs.jpclett.9b02768.Search in Google Scholar PubMed
56. Zhang, X. L., Li, K., Shi, W. Y., Wei, C. H., Song, X. P., Yang, S., Sun, Z. B. Baize-Like CeO2 and NiO/CeO2 Nanorod Catalysts Prepared by Dealloying for CO Oxidation. Nanotechnology 2017, 28(4), 045602. https://doi.org/10.1088/1361-6528/28/4/045602.Search in Google Scholar PubMed
57. Cifuentes, B., Cifuentes, A., Bustamante, F., Soler, L., Llorca, J., Cobo, M. Monoliths Washcoated with AuCu Catalysts for CO Removal in an Ethanol Fuel Processor: effect of CeO2–SiO2 Dual Support on the Catalytic Performance and Reactor Cost. Int. J. Hydrogen Energy 2021, 46(2), 2166–2181. https://doi.org/10.1016/j.ijhydene.2020.10.122.Search in Google Scholar
58. Seo, Y., Lee, M. W., Kim, H. J., Choung, J. W., Jung, C., Kim, C. H., Lee, K. Y. Effect of Ag Doping on Pd/Ag–CeO2 Catalysts for CO and C3H6 Oxidation. J. Hazard. Mater. 2021, 415, 125373. https://doi.org/10.1016/j.jhazmat.2021.125373.Search in Google Scholar PubMed
59. Hong, X. W., Sun, Y., Zhu, T. L., Liu, Z. M. Promoting Effect of TiO2 on the Catalytic Performance of Pt–Au/TiO2(x)–CeO2 for the Co-Oxidation of CO and H2 at Room Temperature. Appl. Surf. Sci. 2017, 396, 226–234. https://doi.org/10.1016/j.apsusc.2016.10.076.Search in Google Scholar
60. Li, S. N., Zhu, H. Q., Qin, Z. F., Wang, G. F., Zhang, Y. G., Wu, Z. W., Li, Z. K., Chen, G., Dong, W. W., Wu, Z. H., Zheng, L., Zhang, J., Hu, T., Wang, J. Morphologic Effects of Nano CeO2–TiO2 on the Performance of Au/CeO2–TiO2 Catalysts in Low-Temperature CO Oxidation. Appl. Catal. B Environ. 2014, 144, 498–506. https://doi.org/10.1016/j.apcatb.2013.07.049.Search in Google Scholar
61. Chen, Y. X., Chen, J. X., Qu, W., George, C., Aouine, M., Vernoux, P., Tang, X. F. Well-Defined Palladium-Ceria Interfacial Electronic Effects Trigger CO Oxidation. Chem. Commun. 2018, 54(72), 10140–10143. https://doi.org/10.1039/c8cc04935a.Search in Google Scholar PubMed
62. Carltonbird, M., Eaimsumang, S., Pongstabodee, S., Boonyuen, S., Smith, S. M., Luengnaruemitchai, A. Effect of the Exposed Ceria Morphology on the Catalytic Activity of Gold/Ceria Catalysts for the Preferential Oxidation of Carbon Monoxide. Chem. Eng. J. 2018, 344, 545–555. https://doi.org/10.1016/j.cej.2018.03.111.Search in Google Scholar
63. Dong, F., Meng, Y., Han, W. L., Zhao, H. J., Tang, Z. C. Morphology Effects on Surface Chemical Properties and Lattice Defects of Cu/CeO2 Catalysts Applied for Low-Temperature CO Oxidation. Sci. Rep. 2019, 9, 12056. https://doi.org/10.1038/s41598-019-48606-2.Search in Google Scholar PubMed PubMed Central
64. Lykaki, M., Stefa, S., Carabineiro, S., Pandis, P., Stathopoulos, V., Konsolakis, M. Facet-Dependent Reactivity of Fe2O3/CeO2 Nanocomposites: Effect of Ceria Morphology on CO Oxidation. Catalysts 2019, 9(4), 371. https://doi.org/10.3390/catal9040371.Search in Google Scholar
65. Li, J. H., Liu, Z. Q., Cullen, D. A., Hu, W. H., Huang, J. E., Yao, L. B., Peng, Z. M., Liao, P. L., Wang, R. G. Distribution and Valence State of Ru Species on CeO2 Supports: Support Shape Effect and its Influence on CO Oxidation. ACS Catal. 2019, 9(12), 11088–11103. https://doi.org/10.1021/acscatal.9b03113.Search in Google Scholar
66. Ying, Z., Doronkin, D. E., Chen, M. L., Wei, S. Q., Grunwaldt, J. D. Interplay of Pt and Crystal Facets of TiO2: CO Oxidation Activity and Operando XAS/DRIFTS Studies. ACS Catal. 2016, 6(11), 7799–7809. https://doi.org/10.1021/acscatal.6b01509.Search in Google Scholar
67. Hussain, I., Jalil, A. A., Hamid, M. Y. S., Hassan, N. S. Recent Advances in Catalytic Systems in the Prism of Physicochemical Properties to Remediate Toxic CO Pollutants: A State-of-the-Art Review. Chemosphere 2021, 277, 130285. https://doi.org/10.1016/j.chemosphere.2021.130285.Search in Google Scholar PubMed
68. Tang, X. Y., Wang, J. C., Li, J., Zhang, X. L., La, P. Q., Jiang, X., Liu, B. D. In-Situ Growth of Large-Area Monolithic Fe2O3/TiO2 Catalysts on Flexible Ti Mesh for CO Oxidation. J. Mater. Sci. Technol. 2021, 69, 119–128. https://doi.org/10.1016/j.jmst.2020.08.026.Search in Google Scholar
69. Li, D., Chen, S. L., You, R., Liu, Y. X., Yang, M., Cao, T., Qian, K., Zhang, Z. H., Tian, J., Huang, W. X. Titania-Morphology-Dependent Dual-Perimeter-Sites Catalysis by Au/TiO2 Catalysts in Low-Temperature CO Oxidation. J. Catal. 2018, 368, 163–171. https://doi.org/10.1016/j.jcat.2018.09.032.Search in Google Scholar
70. Du, M. M., Huang, J. L., Sun, D. H., Wang, D., Li, Q. B. High Catalytic Stability for CO Oxidation Over Au/TiO2 Catalysts by Cinnamomum Camphora Leaf Extract. Ind. Eng. Chem. Res. 2018, 57(44), 14910–14914. https://doi.org/10.1021/acs.iecr.8b02458.Search in Google Scholar
71. Selishchev, D. S., Kolobov, N. S., Bukhtiyarov, A. V., Gerasimov, E. Y., Gubanov, A. I., Kozlov, D. V. Deposition of Pd Nanoparticles on TiO2 Using a Pd(acac)(2) Precursor for Photocatalytic Oxidation of CO Under UV-LED Irradiation. Appl. Catal. B Environ. 2018, 235, 214–224. https://doi.org/10.1016/j.apcatb.2018.04.074.Search in Google Scholar
72. Sandoval, A., Zanella, R., Klimova, T. E. Titania Nanotubes Decorated with Anatase Nanocrystals as Support for Active and Stable Gold Catalysts for CO Oxidation. Catal. Today 2017, 282, 140–150. https://doi.org/10.1016/j.cattod.2016.05.056.Search in Google Scholar
73. Dong, S. Z., Wang, J. C., Tang, X. Y., Li, J., Zhang, X. L., Liu, B. D. Low-Temperature and Stable CO Oxidation of In-Situ Grown Monolithic Mn3O4/TiO2 Catalysts. J. Alloys Compd. 2021, 855, 157444. https://doi.org/10.1016/j.jallcom.2020.157444.Search in Google Scholar
74. Zedan, A. F., Gaber, S., Aljaber, A. S., Polychronopoulou, K. CO Oxidation at Near-Ambient Temperatures over TiO2-Supported Pd–Cu Catalysts: Promoting Effect of Pd–Cu Nanointerface and TiO2 Morphology. Nanomaterials 2021, 11(7), 1675. https://doi.org/10.3390/nano11071675.Search in Google Scholar PubMed PubMed Central
75. Zhai, X. F., Liu, C. W., Chang, Q., Zhao, C. Q., Tan, R., Peng, H. L., Liu, D., Zhang, P., Gui, J. Z. TiO2-Nanosheet-Assembled Microspheres as Pd-Catalyst Support for Highly-Stable Low-Temperature CO Oxidation. New J. Chem. 2018, 42(22), 18066–18076. https://doi.org/10.1039/c8nj03768j.Search in Google Scholar
76. Clark, P. D., Sui, R. H., Dowling, N. I., Huang, M. M., Lo, J. M. H. Oxidation of CO in the Presence of SO2 Using Gold Supported on La2O3/TiO2 Nanofibers. Catal. Today 2013, 207, 212–219. https://doi.org/10.1016/j.cattod.2012.05.033.Search in Google Scholar
77. Yan, D. W., Li, Q. R., Zhang, H., Zhou, X. X., Chen, H. R. A Highly Dispersed Mesoporous Zeolite@TiO2-Supported Pt for Enhanced Sulfur-Resistance Catalytic CO Oxidation. Catal. Commun. 2020, 142, 106042. https://doi.org/10.1016/j.catcom.2020.106042.Search in Google Scholar
78. Liu, X., Zhang, J., Guo, X., Wu, S., Wang, S. Porous α-Fe2O3 Decorated by Au Nanoparticles and Their Enhanced Sensor Performance. Nanotechnology 2010, 21, 095501. https://doi.org/10.1088/0957-4484/21/9/095501.Search in Google Scholar PubMed
79. Han, Q., Zhang, D., Guo, J., Zhu, B., Huang, W., Zhang, S. Improved Catalytic Performance of Au/Alpha-Fe2O3-Like-Worm Catalyst for Low Temperature CO Oxidation. Nanomaterials (Basel) 2019, 9(8), 1118. https://doi.org/10.3390/nano9081118.Search in Google Scholar PubMed PubMed Central
80. Guczi, L., Horváth, D., Pászti, Z., Pet, G. Effect of Treatments on Gold Nanoparticles: relation between Morphology, Electron Structure and Catalytic Activity in CO Oxidation. Catal. Today 2002, 72, 101–105. https://doi.org/10.1016/S0920-5861(01)00483-7.Search in Google Scholar
81. Wang, L., Pu, C. H., Xu, L. L., Cai, Y. F., Guo, Y. L., Guo, Y., Lu, G. Z. Effect of Supports Over Pd/Fe2O3 on CO Oxidation at Low Temperature. Fuel Process. Technol. 2017, 160, 152–157. https://doi.org/10.1016/j.fuproc.2017.02.037.Search in Google Scholar
82. Ma, Y. L., Li, F., Ren, X. B., Chen, W. L., Li, C., Tao, P., Song, C. Y., Shang, W., Huang, R., Lv, B. L., Zhu, H., Deng, T., Wu, J. B. Facets Matching of Platinum and Ferric Oxide in Highly Efficient Catalyst Design for Low-Temperature CO Oxidation. ACS Appl. Mater. Interfaces 2018, 10(17), 15322–15327. https://doi.org/10.1021/acsami.8b03579.Search in Google Scholar PubMed
83. Xu, H., Ni, K., Li, X. K., Fang, G. Z., Fan, G. H. Structural Transformation of Pd-α-Fe2O3 and Pd-γ-Fe2O3 Catalysts and Application in the CO Oxidation Reaction. RSC Adv. 2017, 7(81), 51403–51410. https://doi.org/10.1039/c7ra09580e.Search in Google Scholar
84. Gao, Y., Chiang, F. K., Li, S., Zhang, L., Wang, P., Hensen, E. J. M. Influence of Hematite Morphology on the CO Oxidation Performance of Au/α-Fe2O3. Chin. J. Catal. 2021, 42(4), 658–665. https://doi.org/10.1016/S1872-2067(20)63687-7.Search in Google Scholar
85. Zhang, X. D., Li, H. X., Yang, Y., Zhang, T. T., Wen, X., Liu, N., Wang, D. J. Facile Synthesis of New Efficient Cu/MnO2 Catalysts from Used Battery for CO Oxidation. J. Environ. Chem. Eng. 2017, 5(5), 5179–5186. https://doi.org/10.1016/j.jece.2017.09.059.Search in Google Scholar
86. Anil, C., Madras, G. Catalytic Behaviour of Mn2.94M0.06O4-Delta (M=Pt, Ru and Pd) Catalysts for Low Temperature Water Gas Shift (WGS) and CO Oxidation. Int. J. Hydrogen Energy 2020, 45(17), 10461–10474; https://doi.org/10.1016/j.ijhydene.2019.04.117.Search in Google Scholar
87. Mo, S. P., Peng, P., Pei, Y. C., Shen, T. M., Xie, Q. L., Fu, M. L., Chen, Y. F., Ye, D. Q. Immobilizing Ultrafine Bimetallic PtAg Alloy Onto Uniform MnO2 Microsphere as a Highly Active Catalyst for CO Oxidation. Chin. Chem. Lett. 2021, 32(6), 2057–2060. https://doi.org/10.1016/j.cclet.2020.11.062.Search in Google Scholar
88. May, Y. A., Wei, S., Yu, W. Z., Wang, W. W., Jia, C. J. Highly Efficient CuO/Alpha-MnO2 Catalyst for Low-Temperature CO Oxidation. Langmuir 2020, 36(38), 11196–11206. https://doi.org/10.1021/acs.langmuir.0c00692.Search in Google Scholar PubMed
89. Gong, L., Liu, C. X., Liu, Q., Dai, R. Y., Nie, X. L., Lu, L. M., Liu, G. B., Hu, X. X. CuO/CeO2–MnO2 Catalyst Prepared by Redox Method for Preferential Oxidation of CO in H2-Rich Gases. Catal. Surv. Asia 2019, 23(1), 1–9. https://doi.org/10.1007/s10563-019-09264-6.Search in Google Scholar
90. Wang, X. Y., Huang, K. K., Yuan, L., Li, S., Ma, W., Liu, Z. Y., Feng, S. H. Molten Salt Flux Synthesis, Crystal Facet Design, Characterization, Electronic Structure, and Catalytic Properties of Perovskite Cobaltite. ACS Appl. Mater. Interfac. 2018, 10(33), 28219–28231. https://doi.org/10.1021/acsami.8b08621.Search in Google Scholar PubMed
91. Chen, Y., Liu, Y. M., Mao, D. S., Yu, J., Zheng, Y. L., Guo, X. M., Ma, Z. Facile Cyclodextrin-Assisted Synthesis of Highly Active CuO–CeO2/MCF Catalyst for CO Oxidation. J. Taiwan Inst. Chem. Eng. 2020, 113, 16–26. https://doi.org/10.1016/j.jtice.2020.07.015.Search in Google Scholar
92. Li, Z. L., Cheng, H., Zhang, X. B., Ji, M., Wang, S. Y., Wang, S. D. CuW/CeZr Catalysts: A Dual-Function Catalyst for Selective Catalytic Reduction of NO and CO Oxidation Under Oxygen-Rich Conditions. Catal. Lett. 2021, 151(11), 3361–3371. https://doi.org/10.1007/s10562-021-03562-3.Search in Google Scholar
93. Grabchenko, M. V., Mamontov, G. V., Zaikovskii, V. I., La Parola, V., Liotta, L. F., Vodyankina, O. V. The Role of Metal-Support Interaction in Ag/CeO2 Catalysts for CO and Soot Oxidation. Appl. Catal. B Environ. 2020, 260, 118148. https://doi.org/10.1016/j.apcatb.2019.118148.Search in Google Scholar
94. Mohamed, Z., Dasireddy, V. D. B. C., Singh, S., Friedrich, H. B. Comparative Studies for CO Oxidation and Hydrogenation Over Supported Pt Catalysts Prepared by Different Synthesis Methods. Renew. Energy 2020, 148, 1041–1053. https://doi.org/10.1016/j.renene.2019.10.088.Search in Google Scholar
95. Derekaya, F., Arasan, N., Guldur, C. Effects of Preparation Method on the Characterization and CO Oxidation Activities of the Carbon-Supported CuO–CeO2 Catalysts. Arabian J. Sci. Eng. 2021, 47, 6033–6047. https://doi.org/10.1007/s13369-021-05840-z.Search in Google Scholar
96. Shen, W. W., Mao, D. S., Luo, Z. M., Yu, J. CO Oxidation on Mesoporous SBA-15 Supported CuO–CeO2 Catalyst Prepared by a Surfactant-Assisted Impregnation Method. RSC Adv. 2017, 7(44), 27689–27698. https://doi.org/10.1039/c7ra02966g.Search in Google Scholar
97. Sun, S. S., Mao, D. S., Yu, J. Enhanced CO Oxidation Activity of CuO/CeO2 Catalyst Prepared by Surfactant-Assisted Impregnation Method. J. Rare Earths 2015, 33(12), 1268–1274. https://doi.org/10.1016/S1002-0721(14)60556-1.Search in Google Scholar
98. Tang, C. J., Sun, J. F., Yao, X. J., Cao, Y., Liu, L. C., Ge, C. Y., Gao, F., Dong, L. Efficient Fabrication of Active CuO–CeO2/SBA-15 Catalysts for Preferential Oxidation of CO by Solid State Impregnation. Appl. Catal. B Environ. 2014, 146, 201–212. https://doi.org/10.1016/j.apcatb.2013.05.060.Search in Google Scholar
99. Tang, X., Zhang, B., Li, Y., Xu, Y., Shen, W. Carbon Monoxide Oxidation Over CuO/CeO2 Catalysts. Catal. Today 2004, 93–95, 191–198. https://doi.org/10.1016/j.cattod.2004.06.040.Search in Google Scholar
100. Jampa, S., Wangkawee, K., Tantisriyanurak, S., Changpradit, J., Jamieson, A. M., Chaisuwan, T., Luengnaruemitchai, A., Wongkasemjit, S. High Performance and Stability of Copper Loading on Mesoporous Ceria Catalyst for Preferential Oxidation of CO in Presence of Excess of Hydrogen. Int. J. Hydrogen Energy 2017, 42(8), 5537–5548. https://doi.org/10.1016/j.ijhydene.2016.08.078.Search in Google Scholar
101. Guo, Y., Wang, G., Yao, X., Liu, B. Q. A Comparison of NiO–CuO–CeO2 Composite Catalysts Prepared via Different Methods for CO Oxidation. J. Solid State Chem. 2020, 292, 121697. https://doi.org/10.1016/j.jssc.2020.121697.Search in Google Scholar
102. Wang, S., Xu, X. L., Zhu, J. J., Tang, D. H., Zhao, Z. Effect of Preparation Method on Physicochemical Properties and Catalytic Performances of LaCoO3 Perovskite for CO Oxidation. J. Rare Earths 2019, 37(9), 970–977. https://doi.org/10.1016/j.jre.2018.11.011.Search in Google Scholar
103. Li, P., Chen, X. Y., Li, Y. D., Schwank, J. W. Effect of Preparation Methods on the Catalytic Activity of La0.9Sr0.1CoO3 Perovskite for CO and C3H6 Oxidation. Catal. Today 2021, 364, 7–15. https://doi.org/10.1016/j.cattod.2020.03.012.Search in Google Scholar
104. Rastegarpanah, A., Rezaei, M., Meshkani, F., Dai, H. 3D Ordered Honeycomb-Shaped CuO·Mn2O3: Highly Active Catalysts for CO Oxidation. Mol. Catal. 2020, 485, 110820. https://doi.org/10.1016/j.mcat.2020.110820.Search in Google Scholar
105. Liang, X., Zhang, S., Zhao, M., Xu, J., Yu, Y., Song, S. Y., Zhang, H. J. Co3O4/CeO2 Multi-Shelled Nanospheres Derived from Self-Templated Synthesis for Efficient Catalytic CO Oxidation. Dalton Trans. 2021, 50(27), 9637–9642. https://doi.org/10.1039/d1dt00608h.Search in Google Scholar PubMed
106. Shi, L. Y., Li, Y. X., Xue, D. M., Shao, M. Q., Gu, M. X., Liu, X. Q., Sun, L. B. Facile Fabrication of Small-Sized Palladium Nanoparticles in Nanoconfined Spaces for Low-Temperature CO Oxidation. Ind. Eng. Chem. Res. 2020, 59(43), 19145–19152. https://doi.org/10.1021/acs.iecr.0c01885.Search in Google Scholar
107. Liu, J. Q., Zhou, C., Yue, W. Z., Yan, B., Lin, Y. C., Huang, A. S. Facile and Green Template-Free Synthesis of Morphology-Controllable Co3O4 Catalysts for CO Oxidation. Chem. Phys. Lett. 2020, 756, 137817. https://doi.org/10.1016/j.cplett.2020.137817.Search in Google Scholar
108. Luong, X. D., Luu, Q. T., Nguyen, T. T., Huynh, D. C., Ngo, D. Q., Yoshimura, M., Ishida, T. Facile Synthesis of MnO2@SiO2/Carbon Nanocomposite-Based Gold Catalysts from Rice Husk for Low-Temperature CO Oxidation. Catal. Lett. 2020, 150(9), 2726–2733. https://doi.org/10.1007/s10562-020-03180-5.Search in Google Scholar
109. Zheng, Y. L., Mao, D. S., Sun, S. S., Fu, G. Y. Solvothermal Synthesis in Ethylene Glycol and Catalytic Activity for CO Oxidation of CuO/CeO2 Catalysts. J. Mater. Sci. 2015, 51(2), 917–925. https://doi.org/10.1007/s10853-015-9420-3.Search in Google Scholar
110. Mrabet, D., Abassi, A., Cherizol, R., Do, T. O. One-Pot Solvothermal Synthesis of Mixed Cu–Ce–Ox Nanocatalysts and Their Catalytic Activity for Low Temperature CO Oxidation. Appl. Catal. A Gen. 2012, 447–448, 60–66. https://doi.org/10.1016/j.apcata.2012.09.005.Search in Google Scholar
111. Chen, G. Z., Xu, Q. H., Yang, Y., Li, C. C., Huang, T. Z., Sun, G. X., Zhang, S. X., Ma, D. L., Li, X. Facile and Mild Strategy to Construct Mesoporous CeO2–CuO Nanorods with Enhanced Catalytic Activity Toward CO Oxidation. ACS Appl. Mater. Interfaces 2015, 7(42), 23538–23544. https://doi.org/10.1021/acsami.5b06495.Search in Google Scholar PubMed
112. Jung, C. R., Kundu, A., Nam, S. W., Lee, H. I. Selective Oxidation of Carbon Monoxide Over CuO–CeO2 Catalyst: Effect of Hydrothermal Treatment. Appl. Catal. B Environ. 2008, 84(3–4), 426–432. https://doi.org/10.1016/j.apcatb.2008.04.024.Search in Google Scholar
113. Haruta, M., Yamada, N., Kobayashi, T., Iijima, S. Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide. Academic Press 1989, 115(2), 301–309. https://doi.org/10.1016/0021-9517(89)90034-1.Search in Google Scholar
114. Haruta, M. ChemInform Abstract: Size and Support Dependency in the Catalysis of Gold. ChemInform 1997, 28(30), 16–23; https://doi.org/10.1002/chin.199730270.Search in Google Scholar
115. Duan, D., Hao, C. X., He, G. G., Wang, H. Y., Shi, W. Y., Gao, L. M., Sun, Z. B. Co3O4 Nanosheet/Au Nanoparticle/CeO2 Nanorod Composites as Catalysts for CO Oxidation at Room Temperature. ACS Appl. Nano Mater. 2020, 3(12), 12416–12426. https://doi.org/12416-12426.10.1021/acsanm.0c02922.10.1021/acsanm.0c02922Search in Google Scholar
116. Qiao, B., Liu, L., Zhang, J., Deng, Y. Preparation of Highly Effective Ferric Hydroxide Supported Noble Metal Catalysts for CO Oxidations: From Gold to Palladium. J. Catal. 2008, 261(2), 241–244. https://doi.org/10.1016/j.jcat.2008.11.012.Search in Google Scholar
117. Leba, A., Davran-Candan, T., Onsan, Z. I., Yildirim, R. DRIFTS Study of Selective CO Oxidation Over Au/Gamma-Al2O3 Catalyst. Catal. Commun. 2012, 29, 6–10. https://doi.org/10.1016/j.catcom.2012.09.010.Search in Google Scholar
118. Dobrosz-Gomez, I., Gomez-Garcia, M. A., Rynkowski, J. M. The Origin of Au/Ce1−xZrxO2 Catalyst’s Active Sites in Low-Temperature CO Oxidation. Catalysts 2020, 10(11), 1312. https://doi.org/10.3390/catal10111312.Search in Google Scholar
119. Jing, G. J., Zhang, L., Ma, R. Y., Wu, J. F., Wu, G. Q., Yan, L. H., Zeng, S. H. Comparison of Au–Ce and Au–Cu Interaction over Au/CeO2–CuO Catalysts for Preferential CO Oxidation. CrystEngComm 2019, 21(2), 363–371. https://doi.org/10.1039/c8ce01839a.Search in Google Scholar
120. Daté, M., Haruta, M. Moisture Effect on CO Oxidation Over Au/TiO2 Catalyst. J. Catal. 2001, 201(2), 221–224. https://doi.org/10.1006/jcat.2001.3254.Search in Google Scholar
121. Daté, M., Okumura, M., Tsubota, S., Haruta, M. Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew. Chem. Int. Ed. 2004, 43(16), 2129–2132. https://doi.org/10.1002/anie.200453796.Search in Google Scholar PubMed
122. Daté, M., Okumura, M., Tsubota, S., Haruta, M. Vital Role of Moisture in the Catalytic Activity of Supported Gold Nanoparticles. Angew. Chem. 2004, 116(16), 2181–2184. https://doi.org/10.1002/anie.200453796.Search in Google Scholar
123. Jason, T. C., Robert, J. D. Influence of Dihydrogen and Water Vapor on the Kinetics of CO Oxidation Over Au/Al2O3. Ind. Eng. Chem. Res. 2005, 44(14), 5403–5410. https://doi.org/10.1021/ie0492202.Search in Google Scholar
124. Sun, K. J., Kohyama, M., Tanaka, S., Takeda, S. Roles of Water and H2 in CO Oxidation Reaction on Gold Catalysts. J. Phys. Chem. C 2018, 122(17), 9523–9530. https://doi.org/10.1021/acs.jpcc.8b01802.Search in Google Scholar
125. Dobrosz-Gómez, I., Kocemba, I., Rynkowski, J. M. Factors Influencing Structure and Catalytic Activity of Au/Ce1−xZrxO2 Catalysts in CO Oxidation. Appl. Catal. B Environ. 2009, 88(1–2), 83–97. https://doi.org/10.1016/j.apcatb.2008.09.028.Search in Google Scholar
126. Zhu, H., Zhen, M., Clark, J. C., Pan, Z., Overbury, S. H., Sheng, D. Low-Temperature CO Oxidation on Au/Fumed SiO2-Based Catalysts Prepared from Au(en)2Cl3 Precursor. Appl. Catal. A Gen. 2007, 326(1), 89–99. https://doi.org/10.1016/j.apcata.2007.04.004.Search in Google Scholar
127. Lee, W. S., Wan, B. Z., Kuo, C. N., Lee, W. C., Cheng, S. Maintaining Catalytic Activity of Au/TiO2 During the Storage at Room Temperature. Catal. Commun. 2007, 8(11), 1604–1608. https://doi.org/10.1016/j.catcom.2007.01.021.Search in Google Scholar
128. Tang, H. L., Wei, J. K., Fei, L., Qiao, B. T., Pan, X. L., Li, L., Liu, J. Y., Wang, J. H., Zhang, T. Strong Metals-Support Interactions Between Gold Nanoparticles and Nonoxides. J. Am. Chem. Soc. 2016, 138(1), 56–59. https://doi.org/10.1021/jacs.5b11306.Search in Google Scholar PubMed
129. Hashmi, A. S., Hutchings, G. J. Gold Catalysis. Angew Chem. Int. Ed. Engl. 2006, 45(47), 7896–7936. https://doi.org/10.1002/anie.200602454.Search in Google Scholar PubMed
130. Hendriksen, B. L. M., Frenken, J. W. M. CO Oxidation on Pt(110): Scanning Tunneling Microscopy Inside a High-Pressure Flow Reactor. Phys. Rev. Lett. 2002, 89(4), 046101. https://doi.org/10.1103/PhysRevLett.89.046101.Search in Google Scholar PubMed
131. Gao, F., Wang, Y., Cai, D., Goodman, D. W. CO Oxidation on Pt-Group Metals from Ultrahigh Vacuum to Near Atmospheric Pressures. 2. Palladium and Platinum. J. Phys. Chem. C 2009, 113(1), 174–181. https://doi.org/10.1021/jp8077985.Search in Google Scholar
132. Zhang, Z. L., Zhu, Y. H., Asakura, H., Zhang, B., Zhang, J. G., Zhou, M. X., Han, Y., Tanaka, T., Wang, A. Q., Zhang, T., Yan, N. Thermally Stable Single Atom Pt/m–Al2O3 for Selective Hydrogenation and CO Oxidation. Nat. Commun. 2017, 8, 16100. https://doi.org/10.1038/ncomms16100.Search in Google Scholar PubMed PubMed Central
133. Schubert, M. M., Venugopal, A., Kahlich, M. J., Plzak, V., Behm, R. J. Influence of H2O and CO2 on the Selective CO Oxidation in H2-Rich Gases Over Au/Alpha-Fe2O3. J. Catal. 2004, 222, 32–40. https://doi.org/10.1016/j.jcat.2003.08.015.Search in Google Scholar
134. Allian, A. D., Takanabe, K., Fujdala, K. L., Hao, X., Truex, T. J., Cai, J., Buda, C., Neurock, M., Iglesia, E. Chemisorption of CO and Mechanism of CO Oxidation on Supported Platinum Nanoclusters. J. Am. Chem. Soc. 2011, 133(12), 4498. https://doi.org/10.1021/ja110073u.Search in Google Scholar PubMed
135. Chen, Y., Lin, J., Li, L., Pan, X., Zhang, T. Local Structure of Pt Species Dictates Remarkable Performance on Pt/Al2O3 for Preferential Oxidation of CO in H2. Appl. Catal. B Environ. 2021, 282, 119588. https://doi.org/10.1016/j.apcatb.2020.119588.Search in Google Scholar
136. Zhang, N., Li, L., Wu, R., Hong, H., Zheng, L., Zhang, G., He, H. Activity Enhancement of Pt/MnOx Catalyst by Novel β-MnO2 for Low-Temperature CO Oxidation: Study of the CO–O2 Competitive Adsorption and Active Oxygen Species. Catal. Sci. Technol. 2019, 9(2), 347–354. https://doi.org/10.1039/C8CY01879K.Search in Google Scholar
137. Wang, C., Wen, C., Lauterbach, J., Sasmaz, E. Superior Oxygen Transfer Ability of Pd/MnOx–CeO2 for Enhanced Low Temperature CO Oxidation Activity. Appl. Catal. B Environ. 2017, 206, 1–8. https://doi.org/10.1016/j.apcatb.2017.01.020.Search in Google Scholar
138. Zhou, F. Y., Du, X. X., Yu, J., Mao, D. S., Lu, G. Z. Highly Water-Resistant Carbon Nanotube Supported PdCl2–CuCl2 Catalysts for Low Temperature CO Oxidation. RSC Adv. 2016, 6(71), 66553–66563. https://doi.org/10.1039/c6ra15205h.Search in Google Scholar
139. Park, E. D., Choi, S. H., Lee, J. S. Active States of Pd and Cu in Carbon-Supported Wacker-Type Catalysts for Low-Temperature CO Oxidation. J. Phys. Chem. B 2000, 104(23), 5586–5594. https://doi.org/10.1021/jp000583z.Search in Google Scholar
140. Shen, Y., Lu, G., Guo, Y., Wang, Y., Guo, Y., Gong, X. Study on the Catalytic Reaction Mechanism of Low Temperature Oxidation of CO over Pd–Cu–Clx/Al2O3 Catalyst. Catal. Today 2011, 175(1), 558–567. https://doi.org/10.1016/j.cattod.2011.03.042.Search in Google Scholar
141. Xia, Y., Ye, J. R., Cheng, D. G., Chen, F. Q., Zhan, X. L. Identification of a Flattened Pd–Ce Oxide Cluster as a Highly Efficient Catalyst for Low-Temperature CO Oxidation. Catal. Sci. Technol. 2018, 8(20), 5137–5147. https://doi.org/10.1039/c8cy01590b.Search in Google Scholar
142. Zorn, K., Giorgio, S., Halwax, E., Henry, C. R., Grönbeck, H., Rupprechter, G. CO Oxidation on Technological Pd–Al2O3 Catalysts: Oxidation State and Activity. J. Phys. Chem. C 2011, 115, 1103–1111. https://doi.org/10.1021/jp106235x.Search in Google Scholar
143. Böttcher, A., Niehus, H. Oxygen Adsorbed on Oxidized Ru(0001) %. J. Phys. Rev. B 1999, 60(20), 14396. https://doi.org/10.1103/PhysRevB.60.14396.Search in Google Scholar
144. Han, Y. F., Kinne, M., Behm, R. J. Elective Oxidation of CO on Ru/γ-Al2O3 in Methanol Reformate at Low Temperature. Appl. Catal. B Environ. 2004, 52, 123–134. https://doi.org/10.1016/j.apcatb.2004.03.017.Search in Google Scholar
145. Wendt, S., Knapp, M., Over, H. The Role of Weakly Bound On-Top Oxygen in the Catalytic CO Oxidation Reaction Over RuO2(110). J. Am. Chem. Soc. 2004, 126(5), 1537–1541. https://doi.org/10.1021/ja0364423.Search in Google Scholar PubMed
146. Assmann, J., Narkhede, V., Breuer, N. A., Muhler, M., Seitsonen, A. P., Knapp, M., Crihan, D., Farkas, A., Mellau, G., Over, H. Heterogeneous Oxidation Catalysis on Ruthenium: Bridging the Pressure and Materials Gaps and Beyond. J. Phys. Condens. Matter 2008, 20(18), 184017. https://doi.org/10.1088/0953-8984/20/18/184017.Search in Google Scholar
147. Joo, S. H., Park, J. Y., Renzas, J. R., Butcher, D. R., Huang, W., Somorjai, G. A Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation. Nano Lett. 2010, 10(7), 2709–2713. https://doi.org/10.1021/nl101700j.Search in Google Scholar PubMed
148. Rah, I. J., Kim, T. W., Kim, J., Lee, D., Park, E. D. Selective CO Oxidation in the Hydrogen Stream Over Ru/Al@Al2O3 Catalysts. Catal. Today 2020, 352, 148–156. https://doi.org/10.1016/j.cattod.2019.11.002.Search in Google Scholar
149. Zhang, X. X., Cheng, S. Y., Zhang, W., Zhang, C., Drewett, N. E., Wang, X. Y., Wang, D., Yoo, S. J., Kim, J. G., Zheng, W. Mechanistic Insight into Nanoarchitected Ag/Pr6O11 Catalysts for Efficient CO Oxidation. Ind. Eng. Chem. Res. 2017, 56(39), 11042–11048. https://doi.org/10.1021/acs.iecr.7b02530.Search in Google Scholar
150. Qu, Z. P., Yu, F. L., Zhang, X., Wang, Y., Gao, J. S. Support Effects on the Structure and Catalytic Activity of Mesoporous Ag/CeO2 Catalysts for CO Oxidation. Chem. Eng. J. 2013, 229, 522–532. https://doi.org/10.1016/j.cej.2013.06.061.Search in Google Scholar
151. Katabathini, N., Al-Shehri, A., Al-Thabaiti, S. Porous Ag–Fe2O3 Nanocomposite Catalysts for the Oxidation of Carbon Monoxide. Appl. Catal. A Gen. 2015, 505, 431–440. https://doi.org/10.1016/j.apcata.2015.05.017.Search in Google Scholar
152. Xu, J., Zhang, J. Y., Peng, H. G., Xu, X. L., Liu, W. M., Wang, Z., Zhang, N., Wang, X. Ag Supported on Meso-Structured SiO2 with Different Morphologies for CO Oxidation: On the Inherent Factors Influencing the Activity of Ag Catalysts. Microporous Mesoporous Mater. 2017, 242, 90–98. https://doi.org/10.1016/j.micromeso.2017.01.016.Search in Google Scholar
153. Zhang, X. D., Yang, Y., Song, L., Wang, Y. X., He, C., Wang, Z., Cui, L. F. High and Stable Catalytic Activity of Ag/Fe2O3 Catalysts Derived from MOFs for CO Oxidation. Mol. Catal. 2018, 447, 80–89. https://doi.org/10.1016/j.mcat.2018.01.007.Search in Google Scholar
154. Kibis, L. S., Svintsitskiy, D. A., Kardash, T. Y., Slavinskaya, E. M., Gotovtseva, E. Y., Svetlichnyi, V. A., Boronin, A. I. Interface Interactions and CO Oxidation Activity of Ag/CeO2 Catalysts: A New Approach Using Model Catalytic Systems. Appl. Catal. A Gen. 2019, 570, 51–61. https://doi.org/10.1016/j.apcata.2018.11.005.Search in Google Scholar
155. Di Benedetto, A., Landi, G., Lisi, L. Preferential Oxidation of Carbon Monoxide in Hydrogen-Rich Streams Over CuO/CeO2 Catalysts: How Nano (and Subnano) Structure Affects Catalytic Activity and Selectivity. Nanostruct. Catal. Environ. Appl. 2021, 15, 79–112; https://doi.org/10.1007/978-3-030-58934-9_3.Search in Google Scholar
156. Nagase, K., Zheng, Y., Kodama, Y., Kakuta, J. Dynamic Study of the Oxidation State of Copper in the Course of Carbon Monoxide Oxidation Over Powdered CuO and Cu2O. J. Catal. 1999, 187(1), 123–130. https://doi.org/10.1006/jcat.1999.2611.Search in Google Scholar
157. Qin, L., Cui, Y. Q., Deng, T. L., Wei, F. H., Zhang, X. F. Highly Stable and Active Cu-1/CeO2 Single-Atom Catalyst for CO Oxidation: A DFT Study. ChemPhysChem 2018, 19(24), 3346–3349. https://doi.org/10.1002/cphc.201800860.Search in Google Scholar PubMed
158. Di Benedetto, A., Landi, G., Lisi, L., Russo, G. Role of CO2 on CO Preferential Oxidation Over CuO/CeO2 Catalyst. Appl. Catal. B Environ. 2013, 142/143, 169–177. https://doi.org/10.1016/j.apcatb.2013.05.001.Search in Google Scholar
159. Yin, Y. L., Liu, K. W., Gao, M. Y., Zhang, L., Su, H. Q., Zeng, S. H. Influence of the Structure and Morphology of CuO Supports on the Amount and Properties of Copper-Cerium Interfacial Sites in Inverse CeO2/CuO Catalysts. J. Mol. Catal. Chem. 2015, 404, 193–203. https://doi.org/10.1016/j.molcata.2015.05.001.Search in Google Scholar
160. Chen, C. S., Chen, T. C., Chen, C. C., Lai, Y. T., You, J. H., Chou, T. M., Chen, C. H., Lee, J. F. Effect of Ti3+ on TiO2-Supported Cu Catalysts Used for CO Oxidation. Langmuir 2012, 28(26), 9996–10006. https://doi.org/10.1021/la301684h.Search in Google Scholar PubMed
161. Bin, F., Xiaolin, W., Bo, L., Kwan, S. H. Self-Sustained Combustion of Carbon Monoxide Promoted by the Cu–Ce/ZSM-5 Catalyst in CO/O2/N2 Atmosphere. Appl. Catal. B Environ. 2015, 162, 282–288. https://doi.org/10.1016/j.apcatb.2014.07.007.Search in Google Scholar
162. Yu, J. H., Yu, J., Wei, Z. C., Guo, X. M., Mao, H. F., Mao, D. S. Preparation and Characterization of UiO-66-Supported Cu–Ce Bimetal Catalysts for Low-Temperature CO Oxidation. Catal. Lett. 2019, 149(2), 496–506. https://doi.org/10.1007/s10562-018-2639-2.Search in Google Scholar
163. Huang, J., Wang, S., Zhao, Y., Wang, X., Wang, S., Wu, S., Zhang, S., Huang, W. Synthesis and Characterization of CuO/TiO2 Catalysts for Low-Temperature CO Oxidation. Catal. Commun. 2006, 7(12), 1029–1034. https://doi.org/10.1016/j.catcom.2006.05.001.Search in Google Scholar
164. Martínez-Arias, A., Gamarra, D., Ndez-García, M., Horné, A., Schay, Z., Koppány, Z. Redox-Catalytic Correlations in Oxidised Copper-Ceria CO-PROX Catalysts. Catal. Today 2015, 143(3–4), 211–217. https://doi.org/10.1016/j.cattod.2008.09.018.Search in Google Scholar
165. Martínez-Arias, A., Hungría, A., Munuera, G., Gamarra, D. Preferential Oxidation of CO in Rich H2 Over CuO/CeO2: Details of Selectivity and Deactivation Under the Reactant Stream. Appl. Catal. B Environ. 2006, 65(3–4), 207–216. https://doi.org/10.1016/j.apcatb.2006.02.003.Search in Google Scholar
166. Zou, H., Chen, S., Lin, W. Effect of Pretreatment Methods on the Performance of Cu–Zr–Ce–O Catalyst for CO Selective Oxidation. J. Nat. Gas Chem. 2008, 17(2), 208–211. https://doi.org/10.1016/S1003-9953(08)60053-5.Search in Google Scholar
167. Meng, M., Liu, Y. Q., Sun, Z. S., Zhang, L. J., Wang, X. T. Synthesis of Highly-Dispersed CuO–CeO2 Catalyst Through a Chemisorption-Hydrolysis Route for CO Preferential Oxidation in H2-Rich Stream. Int. J. Hydrogen Energy 2012, 37(19), 14133–14142. https://doi.org/10.1016/j.ijhydene.2012.07.075.Search in Google Scholar
168. Chen, Y. N., Liu, D. S., Yang, L. J., Meng, M., Zhang, J., Zheng, L. R., Chu, S. Q., Hu, T. D. Ternary Composite Oxide Catalysts CuO/Co3O4–CeO2 with Wide Temperature-Window for the Preferential Oxidation of CO in H2-Rich Stream. Chem. Eng. J. 2013, 234, 88–98. https://doi.org/10.1016/j.cej.2013.08.063.Search in Google Scholar
169. Qiu, Z. H., Guo, X. L., Mao, J. X., Zhou, R. X. New Design and Construction of Abundant Active Surface Interfacial Copper Entities in CuxCe1−xO2 Nanorod Catalysts for CO-PROX. J. Phys. Chem. C 2021, 125(17), 9178–9189. https://doi.org/10.1021/acs.jpcc.1c02030.Search in Google Scholar
170. Guo, L. H., Tian, Y., Li, J., Zhao, D. Y., Yu, X. B., Ding, T., Jiang, Z., Li, X. G. Effect of Sn-Rich and Ce-Rich Sn1−xCexO2 Supports of Pd Catalysts on CO Oxidation. Catal. Today 2020, 355, 358–365. https://doi.org/10.1016/j.cattod.2019.08.063.Search in Google Scholar
171. Ayodele, B. V., Khan, M. R., Cheng, C. K. Catalytic Performance of Ceria-Supported Cobalt Catalyst for CO-Rich Hydrogen Production from Dry Reforming of Methane. Int. J. Hydrogen Energy 2016, 41(1), 198–207. https://doi.org/10.1016/j.ijhydene.2015.10.049.Search in Google Scholar
172. Gao, W., Zhang, Z. Y., Li, J., Ma, Y. Y., Qu, Y. Q. Surface Engineering on CeO2 Nanorods by Chemical Redox Etching and Their Enhanced Catalytic Activity for CO Oxidation. Nanoscale 2015, 7(27), 11686–11691. https://doi.org/10.1039/c5nr01846c.Search in Google Scholar PubMed
173. Zhang, X. D., Hou, F. L., Yang, Y., Wang, Y. X., Liu, N., Chen, D., Yang, Y. Q. A Facile Synthesis for Cauliflower Like CeO2 Catalysts from Ce-BTC Precursor and Their Catalytic Performance for CO Oxidation. Appl. Surf. Sci. 2017, 423, 771–779. https://doi.org/10.1016/j.apsusc.2017.06.235.Search in Google Scholar
174. Li, J. F., Lu, G. Z., Li, H. F., Wang, Y. Q., Guo, Y., Guo, Y. L. Facile Synthesis of 3D Flowerlike CeO2 Microspheres Under Mild Condition with High Catalytic Performance for CO Oxidation. J. Colloid Interface Sci. 2011, 360(1), 93–99. https://doi.org/10.1016/j.jcis.2011.04.052.Search in Google Scholar PubMed
175. Su, Y. F., Tang, Z. C., Han, W. L., Song, Y., Lu, G. X. Enhanced Catalytic Performance of Three-Dimensional Ordered Mesoporous Transition Metal (Co, Cu, Fe)-Doped CeO2 Catalysts for CO Catalytic Oxidation. Catal. Surv. Asia 2015, 19(2), 68–77. https://doi.org/10.1007/s10563-015-9185-3.Search in Google Scholar
176. Li, J., Lu, G. Z., Wu, G. S., Mao, D. S., Wang, Y. Q., Guo, Y. Promotional Role of Ceria on Cobaltosic Oxide Catalyst for Low-Temperature CO Oxidation. Catal. Sci. Technol. 2012, 2(9), 1865–1871. https://doi.org/10.1039/c2cy20118f.Search in Google Scholar
177. Royer, S., Duprez, D. Catalytic Oxidation of Carbon Monoxide Over Transition Metal Oxides. ChemCatChem 2011, 42(1), 24–65. https://doi.org/10.1002/cctc.201000378.Search in Google Scholar
178. Yu, Y., Takei, T., Ohashi, H., Hong, H., Zhang, X., Haruta, M. Pretreatments of Co3O4 at Moderate Temperature for CO Oxidation at 80 °C. J. Catal. 2009 267(2), 121–128. https://doi.org/10.1016/j.jcat.2009.08.003.Search in Google Scholar
179. Baidya, T., Murayama, T., Bera, P., Safonova, O. V., Steiger, P., Katiyar, N. K., Biswas, K., Haruta, M. Low-Temperature CO Oxidation Over Combustion Made Fe- and Cr-Doped Co3O4 Catalysts: Role of Dopant’s Nature Toward Achieving Superior Catalytic Activity and Stability. J. Phys. Chem. C 2017, 121(28), 15256–15265. https://doi.org/10.1021/acs.jpcc.7b04348.Search in Google Scholar
180. Cai, Y. F., Xu, J., Guo, Y., Liu, J. Y. Ultrathin, Polycrystalline, Two-Dimensional Co3O4 for Low-Temperature CO Oxidation. ACS Catal. 2019, 9(3), 2558–2567. https://doi.org/10.1021/acscatal.8b04064.Search in Google Scholar
181. Alvarez, A., Ivanova, S., Centeno, M. A., Odriozola, J. A. Sub-Ambient CO Oxidation Over Mesoporous Co3O4: Effect of Morphology on Its Reduction Behavior and Catalytic Performance. Appl. Catal. A Gen. 2012, 431, 9–17. https://doi.org/10.1016/j.apcata.2012.04.006.Search in Google Scholar
182. Wang, H. F., Kavanagh, R., Guo, Y. L., Guo, Y., Lu, G. Z., Hu, P. Origin of Extraordinarily High Catalytic Activity of Co3O4 and Its Morphological Chemistry for CO Oxidation at Low Temperature. J. Catal. 2012, 296, 110–119. https://doi.org/10.1016/j.jcat.2012.09.005.Search in Google Scholar
183. Pang, X. Y., Liu, C., Li, D. C., Lv, C. Q., Wang, G. C. Structure Sensitivity of CO Oxidation on Co3O4: A DFT Study. ChemPhysChem 2013, 14(1), 204–212. https://doi.org/10.1002/cphc.201200807.Search in Google Scholar PubMed
184. Jain, R., Gnanakumar, E. S., Gopinath, C. S. Mechanistic Aspects of Wet and Dry CO Oxidation on Co3O4 Nanorod Surfaces: A NAP-UPS Study. ACS Omega 2017, 2(3) 828–834. https://doi.org/10.1021/acsomega.6b00471.Search in Google Scholar PubMed PubMed Central
185. Baidya, T., Murayama, T., Nellaiappan, S., Katiyar, N. K., Bera, P., Safonova, O., Lin, M. Y., Priolkar, K. R., Kundu, S., Rao, B. S., Steiger, P., Sharma, S., Biswas, K., Pradhan, S. K., Lingaiah, N., Malviya, K. D., Haruta, M. Ultra-Low-Temperature CO Oxidation Activity of Octahedral Site Cobalt Species in Co3O4 Based Catalysts: Unravelling the Origin of the Unique Catalytic Property. J. Phys. Chem. C 2019, 123(32), 19557–19571. https://doi.org/10.1021/acs.jpcc.9b04136.Search in Google Scholar
186. Fu, Q., Li, W. X., Yao, Y., Liu, H., Su, H. Y., Ma, D., Gu, X. K., Chen, L., Wang, Z., Zhang, H., Wang, B., Bao, Xi. Interface-Confined Ferrous Centers for Catalytic Oxidation. Science (New York, N.Y.) 2010, 328(5982), 1141–1144. https://doi.org/10.1126/science.1188267.Search in Google Scholar PubMed
187. Xie, X., Li, Y., Liu, Z. Q., Haruta, M., Shen, W. Low-Temperature Oxidation of CO Catalysed by Co3O4 Nanorods. Nature 2009, 458(7239), 746–749. https://doi.org/10.1038/nature07877.Search in Google Scholar PubMed
188. Bae, J., Shin, D., Jeong, H., Kim, B. S., Han, J. W., Lee, H. Highly Water-Resistant La-Doped Co3O4 Catalyst for CO Oxidation. ACS Catal. 2019, 9(11), 10093–10100. https://doi.org/10.1021/acscatal.9b02920.Search in Google Scholar
189. Wang, H. F., Kavanagh, R., Guo, Y. L., Guo, Y., Lu, G. Z., Hu, P. Structural Origin: Water Deactivates Metal Oxides to CO Oxidation and Promotes Low-Temperature CO Oxidation with Metals. Angew. Chem. Int. Ed. 2012, 57(21), 6657–6661. https://doi.org/10.1002/anie.201108981.Search in Google Scholar PubMed
190. Grillo, F., Natile, M. M., Glisenti, A. Low Temperature Oxidation of Carbon Monoxide: The Influence of Water and Oxygen on the Reactivity of a Co3O4 Powder Surface. Appl. Catal. B Environ. 2004, 48(4), 267–274. https://doi.org/10.1016/j.apcatb.2003.11.003.Search in Google Scholar
191. Jain, R., Reddy, K. P., Ghosalya, M. K., Gopinath, C. S. Water Mediated Deactivation of Co3O4 Naonrods Catalyst for CO Oxidation and Resumption of Activity at and Above 373 K: Electronic Structural Aspects by NAPPES. J. Phys. Chem. C 2017, 121(37), 20296–20305. https://doi.org/10.1021/acs.jpcc.7b05480.Search in Google Scholar
192. Xu, X., Sun, X., Han, H., Peng, H. G., Liu, W. M., Peng, X., Wang, X., Yang, X. J. Improving Water Tolerance of Co3O4 by SnO2 Addition for CO Oxidation. Appl. Surf. Sci. 2015, 355, 1254–1260. https://doi.org/10.1016/j.apsusc.2015.08.040.Search in Google Scholar
193. Kuo, C. H., Li, W., Song, W., Luo, Z., Poyraz, A. S., Guo, Y., Ma, A. W. K., Suib, S. L., He, J. Facile Synthesis of Co3O4@CNT with High Catalytic Activity for CO Oxidation Under Moisture-Rich Conditions. ACS Appl. Mater. Interfaces 2014, 6(14), 11311–11317. https://doi.org/10.1021/am501815d.Search in Google Scholar PubMed
194. Azimi, G., Dhiman, R., Kwon, H. M., Paxson, A. T., Varanasi, K. K. Hydrophobicity of Rare-Earth Oxide Ceramics. Nat. Mater. 2013, 12(4), 315–320. https://doi.org/10.1038/NMAT3545.Search in Google Scholar PubMed
195. Ramesh, K., Chen, L., Chen, F., Liu, Y., Wang, Z., Han, Y. F. Re-Investigating the CO Oxidation Mechanism Over Unsupported MnO, Mn2O3 and MnO2 Catalysts. Catal. Today 2008, 131, 477–482. https://doi.org/10.1016/j.cattod.2007.10.061.Search in Google Scholar
196. Zhao, M. Y., Zhao, R. M., Li, W., Wang, T. X., Ma, Y. Q., Dai, X. Q. Mn-Doped SnS2 Nanostructure as a Potential Efficiency CO Catalyst: A First-Principles Study. Appl. Surf. Sci. 2019, 471, 678–685. https://doi.org/10.1016/j.apsusc.2018.12.037.Search in Google Scholar
197. Jampaiah, D., Velisoju, V. K., Devaiah, D., Singh, M., Mayes, E. L. H., Coyle, V. E., Reddy, B. M., Bansal, V., Bhargava, S. K. Flower-Like Mn3O4/CeO2 Microspheres as an Efficient Catalyst for Diesel Soot and CO Oxidation: Synergistic Effects for Enhanced Catalytic Performance. Appl. Surf. Sci. 2019, 473, 209–221. https://doi.org/10.1016/j.apsusc.2018.12.048.Search in Google Scholar
198. Dosa, M., Piumetti, M., Bensaid, S., Russo, N., Fino, D. Novel Mn–Cu-Containing CeO2 Nanopolyhedra for the Oxidation of CO and Diesel Soot (Part II): Effect of Oxygen Concentration on the Catalytic Activity. Catal. Lett. 2019, 149(1), 107–118. https://doi.org/10.1007/s10562-018-2591-1.Search in Google Scholar
199. Yang, W., Wang, S., Li, K., Liu, S., Gan, L. N., Peng, Y., Li, J. H. Highly Selective Alpha-Mn2O3 Catalyst for cGPF Soot Oxidation: Surface Activated Oxygen Enhancement via Selective Dissolution. Chem. Eng. J. 2019, 364, 448–451. https://doi.org/10.1016/j.cej.2019.01.084.Search in Google Scholar
200. Kunkalekar, R. K., Salker, A. V. Low Temperature CO Oxidation Over Nano-Sized Cu–Pd Doped MnO2 Catalysts. React. Kinet. Mech. Catal. 2013, 108(1), 173–182. https://doi.org/10.1007/s11144-012-0492-7.Search in Google Scholar
201. Zhang, X. D., Li, H., Hou, F., Yang, Y., Dong, H., Liu, N., Wang, Y. X., Cui, L. F. Synthesis of Highly Efficient Mn2O3 Catalysts for CO Oxidation Derived from Mn-MIL-100. Appl. Surf. Sci. 2017, 411, 27–33. https://doi.org/10.1016/j.apsusc.2017.03.179.Search in Google Scholar
202. Bulavchenko, O. A., Afonasenko, T. N., Sigaeva, S. S., Ivanchikova, A. V., Saraev, A. A., Gerasimov, E. Y., Kaichev, V. V., Tsybulya, S. V. The Structure of Mixed Mn–Co Oxide Catalysts for CO Oxidation. Top. Catal. 2020, 63(1), 75–85. https://doi.org/10.1007/s11244-020-01230-1.Search in Google Scholar
203. Liu, L., Song, Y., Fu, Z., Ye, Q., Cheng, S., Kang, T., Dai, H. Enhanced Catalytic Performance of Cu- and/or Mn-Loaded Fe-Sep Catalysts for the Oxidation of CO and Ethyl Acetate. Chin. J. Chem. Eng. 2017, 25(10), 1427–1434. https://doi.org/10.1016/j.cjche.2017.01.005.Search in Google Scholar
204. Liu, X. S., Jin, Z. N., Lu, J. Q., Wang, X. X., Luo, M. F. Highly Active CuO/OMS-2 Catalysts for Low-Temperature CO Oxidation. Chem. Eng. J. 2010, 162(1), 151–157. https://doi.org/10.1016/j.cej.2010.05.015.Search in Google Scholar
205. Buciuman, F. C., Patcas, F., Hahn, T. A Spillover Approach to Oxidation Catalysis Over Copper and Manganese Mixed Oxides. Chem. Eng. Process. Process Intensif. 1999, 38, 563–569. https://doi.org/10.1016/S0255-2701(99)00053-7.Search in Google Scholar
206. Chen, B., Yang, X., Zeng, X. L., Huang, Z. L., Xiao, J. R., Wang, J., Zhan, G. W. Multicomponent Metal Oxides Derived from Mn-BTC Anchoring with Metal Acetylacetonate Complexes as Excellent Catalysts for VOCs and CO Oxidation. Chem. Eng. J. 2020, 397, 125424. https://doi.org/10.1016/j.cej.2020.125424.Search in Google Scholar
207. Wang, X. F., Jin, B. T., He, X. Q., Liang, X. H. Highly Active and Stable Fe/SiO2 Catalyst Synthesized by Atomic Layer Deposition for CO Oxidation. Catal. Lett. 2020, 150(11), 3296–3303. https://doi.org/10.1007/s10562-020-03224-w.Search in Google Scholar
208. Kremneva, A. M., Fedorov, A. V., Bulavchenko, O. A., Knyazev, Y. V., Saraev, A. A., Yakovlev, V. A., Kaichev, V. V. Effect of Calcination Temperature on Activity of Fe2O3–Al2O3 Nanocomposite Catalysts in CO Oxidation. Catal. Lett. 2020, 150(12), 3377–3385. https://doi.org/10.1007/s10562-020-03250-8.Search in Google Scholar
209. Fedorov, A. V., Tsapina, A. M., Bulavchenko, O. A., Saraev, A. A., Odegova, G. V., Ermakov, D. Y., Zubavichus, Y. V., Yakovlev, V. A., Kaichev, V. V. Structure and Chemistry of Cu–Fe–Al Nanocomposite Catalysts for CO Oxidation. Catal. Lett. 2018, 148(12), 3715–3722. https://doi.org/10.1007/s10562-018-2539-5.Search in Google Scholar
210. Lou, Y., Liu, J. Y. A Highly Active Pt–Fe/Gamma-Al2O3 Catalyst for Preferential Oxidation of CO in Excess of H2 with a Wide Operation Temperature Window. Chem. Commun. (Camb) 2017, 53(64), 9020–9023. https://doi.org/10.1039/c7cc03787b.Search in Google Scholar PubMed
211. Park, J. W., Jin, H. J., Wang, L. Y., Chang, S. K., Lee, D. K., Park, Y. K., Rhee, Y. W. Selective Oxidation of CO in Hydrogen-Rich Stream Over Cu–Ce Catalyst Promoted with Transition Metals. Int. J. Hydrogen Energy 2005, 30(2), 209–220. https://doi.org/10.1016/j.ijhydene.2004.04.016.Search in Google Scholar
212. Raphulu, M., Ntho, T., Gqogqa, P., Moma, J., Mokoena, L., Pattrick, G., Scurrell, M., Delannoy, L., Louis, C. Effect of Fe on the Activity of Au/FeOx–TiO2 Catalysts for CO Oxidation. Gold Bull. 2016, 49(2), 9–20. https://doi.org/10.1007/s13404-016-0178-4.Search in Google Scholar
213. Reyes, M. H., Solis, R. C., Specia, R. Z., Rodriguez-Gonzalez, V., Ruiz, F. Gold Nanoparticle: Enhanced CO Oxidation at Low Temperatures by Using Fe-Doped TiO2 as Support. Catal. Lett. 2017, 184(1), 383–396. https://doi.org/10.1007/s10562-017-2260-9.Search in Google Scholar
214. Wu, Y. H., Dong, L. H., Li, B. Effect of Iron on Physicochemical Properties: Enhanced Catalytic Performance for Novel Fe2O3 Modified CuO/Ti0.5Sn0.5O2 in Low Temperature CO Oxidation. Mol. Catal. 2018, 456, 65–74. https://doi.org/10.1016/j.mcat.2018.07.005.Search in Google Scholar
215. Liu, K., Wang, A., Zhang, T. J. Recent Advances in Preferential Oxidation of CO Reaction Over Platinum Group Metal Catalysts. ACS Catal. 2012, 2(6), 1165–1178. https://doi.org/10.1021/cs200418w.Search in Google Scholar
216. Zhu, H., Wu, Z., Su, D., Veith, G. M., Lu, H. F., Zhang, P. F., Chai, S. H., Dai, S. Constructing Hierarchical Interfaces: TiO2-Supported PtFe–FeOx Nanowires for Room Temperature CO Oxidation. J. Am. Chem. Soc. 2015, 137(32), 10156–10159. https://doi.org/10.1021/jacs.5b07011.Search in Google Scholar PubMed
217. Wang, W., Zhu, Q., Dai, Q. G., Wang, X. Y. Fe Doped CeO2 Nanosheets for Catalytic Oxidation of 1,2-Dichloroethane: Effect of Preparation Method. Chem. Eng. J. 2017, 307, 1037–1046. https://doi.org/10.1016/j.cej.2016.08.137.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Articles
- Synthetic methodologies to access bioactive bis-coumarin scaffold: a recent progress
- Removal of CO in flue gas by catalytic oxidation: a review
- Original Papers
- Adsorption and visible light driven photocatalytic degradation of Malachite Green and Methylene Blue dye in wastewater using magnetized copper metal organic framework
- Removal of chemicals from effluent using photobioreactor technology to improve environmental and health impacts
- Kinetics and thermodynamics of unimolecular dissociation of n-C3H7I
- Microwave-accelerated heating technique in fabrication of silver nanoparticles using propolis extract: optimization and characterization
- In vitro study on the inflammatory response of chitosan nanoparticles as a potential siRNA carrier targeting towards osteosarcoma cells
- Formulation and development of topical iron oxide nanoemulgel using Punica granatum extract and in vitro evaluation of anti-inflammatory potential in rheumatoid arthritis
Articles in the same Issue
- Frontmatter
- Review Articles
- Synthetic methodologies to access bioactive bis-coumarin scaffold: a recent progress
- Removal of CO in flue gas by catalytic oxidation: a review
- Original Papers
- Adsorption and visible light driven photocatalytic degradation of Malachite Green and Methylene Blue dye in wastewater using magnetized copper metal organic framework
- Removal of chemicals from effluent using photobioreactor technology to improve environmental and health impacts
- Kinetics and thermodynamics of unimolecular dissociation of n-C3H7I
- Microwave-accelerated heating technique in fabrication of silver nanoparticles using propolis extract: optimization and characterization
- In vitro study on the inflammatory response of chitosan nanoparticles as a potential siRNA carrier targeting towards osteosarcoma cells
- Formulation and development of topical iron oxide nanoemulgel using Punica granatum extract and in vitro evaluation of anti-inflammatory potential in rheumatoid arthritis