Home Physical Sciences Graphene-substrate fabricated oxides and zinc oxide catalysts for the degradation of the methylene blue in the industrial wastewater
Article
Licensed
Unlicensed Requires Authentication

Graphene-substrate fabricated oxides and zinc oxide catalysts for the degradation of the methylene blue in the industrial wastewater

  • Adil Khan and Sayyar Muhammad ORCID logo EMAIL logo
Published/Copyright: March 7, 2022

Abstract

The release of unsafe color dyes into various industrial effluents can harm the environment and human health and therefore needs remediation. The current research assesses the environmental friendly photo-less catalytic performance of zinc oxide/reduced graphene oxide (ZnO/RGO) nanocomposites, prepared via green synthetic route, for the degradation, and decontamination of methylene blue (MB) dye from industrial aqueous effluents and compared with that of zinc oxide (ZnO), hydrogen peroxide (H2O2), and reduced graphene oxide (RGO). The materials were characterized for surface morphology, functional groups, and crystallinity by using Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analysis, respectively, showing that ZnO nanoparticles (NPs) were well-formed on the RGO surface and were having uniform pore sizes and large surface area. The degradation pattern of MB from its 40, 60, 80, and 100 ppm solutions by employing the degradation materials were examined using UV–Visible spectral analysis. The pH before and after the degradation of the MB in all the sample solutions was noted and found to change slightly after the degradation of MB. The results demonstrate that the ZnO/RGO nanocomposites display a better catalytic degradation efficiency (99.57%) as compared to the other degradation materials with the order of efficiency as ZnO/RGO > RGO > H2O2 > ZnO which shows that the degradation efficiency of ZnO (∼14%) can be significantly improved while fabricating its nanocomposite with RGO (99.57%). These findings can be utilized on a large-scale decontamination of dyes from industrial wastes without the involvement of light i.e., photo-less degradation.


Corresponding author: Sayyar Muhammad, Department of Chemistry, Islamia College Peshawar, 25120 Peshawar, Khyber Pakhtunkhwa, Pakistan, E-mail:

Acknowledgment

The authors are thankful to PINSTECH Islamabad for providing laboratory facilities for this research work.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The author(s) received no specific funding for this project.

  3. Conflict of interest statement: The authors declare that they have no conflict of interest.

  4. Availability of data and material: The authors confirm that the summary of data supporting the findings of this study is available within the article. However, detailed data of this study is available from the corresponding author upon request.

  5. Code availability: Not applicable.

References

1. Khan, S. U., Khan, H., Anwar, S., Khan, S., Boldrin Zanoni, M. V., Hussain, S. Chemosphere 2020, 253, 126673; https://doi.org/10.1016/j.chemosphere.2020.126673.Search in Google Scholar

2. Mohanty, K., Naidu, J. T., Meikap, B. C., Biswas, M. N. Ind. Eng. Chem. Res. 2006, 45, 5165; https://doi.org/10.1021/ie060257r.Search in Google Scholar

3. Intarasuwan, K., Amornpitoksuk, P., Suwanboon, S., Graidist, P. Separ. Purif. Technol. 2017, 177, 304; https://doi.org/10.1016/j.seppur.2016.12.040.Search in Google Scholar

4. Chakraborty, S., Purkait, M. K., DasGupta, S., De, S., Basu, J. K. Separ. Purif. Technol. 2003, 31, 141; https://doi.org/10.1016/s1383-5866(02)00177-6.Search in Google Scholar

5. Kant, S., Pathania, D., Singh, P., Dhiman, P., Kumar, A. Appl. Catal. B Environ. 2014, 147, 340; https://doi.org/10.1016/j.apcatb.2013.09.001.Search in Google Scholar

6. Neamtu, M., Yediler, A., Siminiceanu, I. Dyes Pigments 2004, 200460, 61–68.10.1016/S0143-7208(03)00129-3Search in Google Scholar

7. El-naas, M. H., Al-muhtaseb, S. A., Makhlouf, S. J. Hazard Mater. 2009, 164, 720; https://doi.org/10.1016/j.jhazmat.2008.08.059.Search in Google Scholar

8. Idris, M. N., Ahmad, Z. A., Ahmad, M. A., Campus, E., Estate, R. Int. J. Basic Appl. Sci. 2011, 11, 38.Search in Google Scholar

9. Dâas, A., Hamdaoui, O. J. Hazard Mater. 2010, 178, 973.10.1016/j.jhazmat.2010.02.033Search in Google Scholar

10. Carrott, P. J. M., Carmel, M. M. L. R., Roberts, R. A. Colloid. Surface. 1991, 58, 385; https://doi.org/10.1016/0166-6622(91)80217-c.Search in Google Scholar

11. Saif, M., Rehman, U., Kim, I., Han, J. Carbohydr. Polym. 2012, 90, 1314.10.1016/j.carbpol.2012.06.078Search in Google Scholar PubMed

12. Raimond, J. M., Brune, M., Computation, Q., De Martini, F., Monroe, C. Sciences 2004, 306, 666.10.1126/science.1102896Search in Google Scholar

13. Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., Herrmann, J. M. Appl. Catal. B Environ. 2001, 31, 145.10.1016/S0926-3373(00)00276-9Search in Google Scholar

14. Haubner, K., Murawski, J., Olk, P., Eng, L. M., Ziegler, C., Adolphi, B., Jaehne, E. ChemPhysChem 2010, 11, 2131; https://doi.org/10.1002/cphc.201000132.Search in Google Scholar PubMed

15. Yang, Y., Xie, Y., Pang, L., Li, M., Song, X., Wen, J., Zhao, H. Langmuir 2013, 29, 10727; https://doi.org/10.1021/la401940z.Search in Google Scholar PubMed

16. Moradi, O.., Gupta, V. K.., Agarwal, S.., Tyagi, I.., Asif, M.., Makhlouf, A. S. H.., Sadegh, H.., Shahryari-ghoshekandi, R.., J. Ind. Eng. Chem., 2015, 28, 294; https://doi.org/10.1016/j.jiec.2015.03.005.Search in Google Scholar

17. Tian, H., Ma, J., Li, K., Li, J. Mater. Chem. Phys. 2008, 112, 47; https://doi.org/10.1016/j.matchemphys.2008.05.005.Search in Google Scholar

18. Andronic, L., Duta, A. Mater. Chem. Phys. 2008, 112, 1078; https://doi.org/10.1016/j.matchemphys.2008.06.059.Search in Google Scholar

19. Amangeldinova, Y., Aben, D., Atabaev, T. S. Mater. Today Proc. 2020, 20, 237; https://doi.org/10.1016/j.matpr.2019.10.040.Search in Google Scholar

20. Jin, S.-E., Jin, H.-E. Nanomaterials 2021, 11, 263; https://doi.org/10.3390/nano11020263.Search in Google Scholar PubMed PubMed Central

21. Alamdari, S., Ghamsari, M. S., Afarideh, H., Mohammadi, A., Geranmayeh, S., Tafreshi, M. J., Majles ara, M. H. Opt. Mater. 2019, 92, 243; https://doi.org/10.1016/j.optmat.2019.04.041.Search in Google Scholar

22. Kalpana, V. N., Rajeswari, V. D. Bioinorgan. Chem. Appl. 2018, 1; https://doi.org/10.1155/2018/3569758.Search in Google Scholar PubMed PubMed Central

23. Nagarajua, G., Udayabhanua, S., Prashanthb, S. A., Shastric, M., Yathisha, K. V., Anupamad, C., Rangappa, D. Mater. Res. Bull. 2017, 94, 54; https://doi.org/10.1016/j.materresbull.2017.05.043.Search in Google Scholar

24. Chaudhary, K., Shaheen, N., Zulfiqar, S., Sarwar, M. I., Suleman, M., Agboola, P. O., Warsi, M. F. Synth. Met 2020, 269, 116526; https://doi.org/10.1016/j.synthmet.2020.116526.Search in Google Scholar

25. Salih, E., Mekawy, M., Hassan, R. Y. A., El-Sherbiny, I. M. J. Nanostruct. Chem. 2016, 6, 137; https://doi.org/10.1007/s40097-016-0188-z.Search in Google Scholar

26. Roy, N., Chakraborty, S. Mater. Today Proc. 2020, 2020.Search in Google Scholar

27. Mouzaia, F., Djouadi, D., Chelouche, A., Hammiche, L. Arab J. Basic Appl. Sci. 2020, 27, 423; https://doi.org/10.1080/25765299.2020.1833484.Search in Google Scholar

28. Yasin, G., Arif, M., Shakeel, M., Dun, Y., Zuo, Y., Khan, W. Q., Tang, Y., Khan, A., Nadeem, M. Adv. Eng. Mater. 2018, 20, 1701166; https://doi.org/10.1002/adem.201701166.Search in Google Scholar

29. Surekha, G., Krishnaiah, K. V., Ravi, N., Suvarna, R. P. J. Phys.: Conf. Ser.; IOP Publishing, 2020, 1495, 012012; https://doi.org/10.1088/1742-6596/1495/1/012012.Search in Google Scholar

30. Pugazhendhi, A. Integr. Med. Res. 2020, 9, 7013.10.1016/j.jmrt.2020.03.118Search in Google Scholar

31. Muangrat, W., Chodjarusawad, T. Solid State Phenom. 2020, 302, 45; https://doi.org/10.4028/www.scientific.net/ssp.302.45.Search in Google Scholar

32. Van-Phuc, D., Thuy-Diem-Thuy, H., Le, H. M., Van-Dong, N., Vinh-Ai, D., Hung, N. Q., Tuyen, L. A., Lee, S., Yi, J., Nguyen, T. D., Tan, L. V. RSC Adv. 2019, 9, 25847; https://doi.org/10.1039/c9ra04296b.Search in Google Scholar PubMed PubMed Central

33. Sengunthar, P., Balasubramanian, K. H. B. C. Appl. Phys. A 2020, 1.Search in Google Scholar

34. Yu, X., Huang, L., Wei, Y., Zhang, J., Zhao, Z., Dai, W., Yao, B. Mater. Res. Bull. 2015, 64, 410; https://doi.org/10.1016/j.materresbull.2015.01.009.Search in Google Scholar

Received: 2021-09-18
Accepted: 2022-02-10
Published Online: 2022-03-07
Published in Print: 2022-05-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3126/pdf?lang=en
Scroll to top button