Abstract
The release of unsafe color dyes into various industrial effluents can harm the environment and human health and therefore needs remediation. The current research assesses the environmental friendly photo-less catalytic performance of zinc oxide/reduced graphene oxide (ZnO/RGO) nanocomposites, prepared via green synthetic route, for the degradation, and decontamination of methylene blue (MB) dye from industrial aqueous effluents and compared with that of zinc oxide (ZnO), hydrogen peroxide (H2O2), and reduced graphene oxide (RGO). The materials were characterized for surface morphology, functional groups, and crystallinity by using Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analysis, respectively, showing that ZnO nanoparticles (NPs) were well-formed on the RGO surface and were having uniform pore sizes and large surface area. The degradation pattern of MB from its 40, 60, 80, and 100 ppm solutions by employing the degradation materials were examined using UV–Visible spectral analysis. The pH before and after the degradation of the MB in all the sample solutions was noted and found to change slightly after the degradation of MB. The results demonstrate that the ZnO/RGO nanocomposites display a better catalytic degradation efficiency (99.57%) as compared to the other degradation materials with the order of efficiency as ZnO/RGO > RGO > H2O2 > ZnO which shows that the degradation efficiency of ZnO (∼14%) can be significantly improved while fabricating its nanocomposite with RGO (99.57%). These findings can be utilized on a large-scale decontamination of dyes from industrial wastes without the involvement of light i.e., photo-less degradation.
Acknowledgment
The authors are thankful to PINSTECH Islamabad for providing laboratory facilities for this research work.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The author(s) received no specific funding for this project.
-
Conflict of interest statement: The authors declare that they have no conflict of interest.
-
Availability of data and material: The authors confirm that the summary of data supporting the findings of this study is available within the article. However, detailed data of this study is available from the corresponding author upon request.
-
Code availability: Not applicable.
References
1. Khan, S. U., Khan, H., Anwar, S., Khan, S., Boldrin Zanoni, M. V., Hussain, S. Chemosphere 2020, 253, 126673; https://doi.org/10.1016/j.chemosphere.2020.126673.Search in Google Scholar
2. Mohanty, K., Naidu, J. T., Meikap, B. C., Biswas, M. N. Ind. Eng. Chem. Res. 2006, 45, 5165; https://doi.org/10.1021/ie060257r.Search in Google Scholar
3. Intarasuwan, K., Amornpitoksuk, P., Suwanboon, S., Graidist, P. Separ. Purif. Technol. 2017, 177, 304; https://doi.org/10.1016/j.seppur.2016.12.040.Search in Google Scholar
4. Chakraborty, S., Purkait, M. K., DasGupta, S., De, S., Basu, J. K. Separ. Purif. Technol. 2003, 31, 141; https://doi.org/10.1016/s1383-5866(02)00177-6.Search in Google Scholar
5. Kant, S., Pathania, D., Singh, P., Dhiman, P., Kumar, A. Appl. Catal. B Environ. 2014, 147, 340; https://doi.org/10.1016/j.apcatb.2013.09.001.Search in Google Scholar
6. Neamtu, M., Yediler, A., Siminiceanu, I. Dyes Pigments 2004, 200460, 61–68.10.1016/S0143-7208(03)00129-3Search in Google Scholar
7. El-naas, M. H., Al-muhtaseb, S. A., Makhlouf, S. J. Hazard Mater. 2009, 164, 720; https://doi.org/10.1016/j.jhazmat.2008.08.059.Search in Google Scholar
8. Idris, M. N., Ahmad, Z. A., Ahmad, M. A., Campus, E., Estate, R. Int. J. Basic Appl. Sci. 2011, 11, 38.Search in Google Scholar
9. Dâas, A., Hamdaoui, O. J. Hazard Mater. 2010, 178, 973.10.1016/j.jhazmat.2010.02.033Search in Google Scholar
10. Carrott, P. J. M., Carmel, M. M. L. R., Roberts, R. A. Colloid. Surface. 1991, 58, 385; https://doi.org/10.1016/0166-6622(91)80217-c.Search in Google Scholar
11. Saif, M., Rehman, U., Kim, I., Han, J. Carbohydr. Polym. 2012, 90, 1314.10.1016/j.carbpol.2012.06.078Search in Google Scholar PubMed
12. Raimond, J. M., Brune, M., Computation, Q., De Martini, F., Monroe, C. Sciences 2004, 306, 666.10.1126/science.1102896Search in Google Scholar
13. Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., Herrmann, J. M. Appl. Catal. B Environ. 2001, 31, 145.10.1016/S0926-3373(00)00276-9Search in Google Scholar
14. Haubner, K., Murawski, J., Olk, P., Eng, L. M., Ziegler, C., Adolphi, B., Jaehne, E. ChemPhysChem 2010, 11, 2131; https://doi.org/10.1002/cphc.201000132.Search in Google Scholar PubMed
15. Yang, Y., Xie, Y., Pang, L., Li, M., Song, X., Wen, J., Zhao, H. Langmuir 2013, 29, 10727; https://doi.org/10.1021/la401940z.Search in Google Scholar PubMed
16. Moradi, O.., Gupta, V. K.., Agarwal, S.., Tyagi, I.., Asif, M.., Makhlouf, A. S. H.., Sadegh, H.., Shahryari-ghoshekandi, R.., J. Ind. Eng. Chem., 2015, 28, 294; https://doi.org/10.1016/j.jiec.2015.03.005.Search in Google Scholar
17. Tian, H., Ma, J., Li, K., Li, J. Mater. Chem. Phys. 2008, 112, 47; https://doi.org/10.1016/j.matchemphys.2008.05.005.Search in Google Scholar
18. Andronic, L., Duta, A. Mater. Chem. Phys. 2008, 112, 1078; https://doi.org/10.1016/j.matchemphys.2008.06.059.Search in Google Scholar
19. Amangeldinova, Y., Aben, D., Atabaev, T. S. Mater. Today Proc. 2020, 20, 237; https://doi.org/10.1016/j.matpr.2019.10.040.Search in Google Scholar
20. Jin, S.-E., Jin, H.-E. Nanomaterials 2021, 11, 263; https://doi.org/10.3390/nano11020263.Search in Google Scholar PubMed PubMed Central
21. Alamdari, S., Ghamsari, M. S., Afarideh, H., Mohammadi, A., Geranmayeh, S., Tafreshi, M. J., Majles ara, M. H. Opt. Mater. 2019, 92, 243; https://doi.org/10.1016/j.optmat.2019.04.041.Search in Google Scholar
22. Kalpana, V. N., Rajeswari, V. D. Bioinorgan. Chem. Appl. 2018, 1; https://doi.org/10.1155/2018/3569758.Search in Google Scholar PubMed PubMed Central
23. Nagarajua, G., Udayabhanua, S., Prashanthb, S. A., Shastric, M., Yathisha, K. V., Anupamad, C., Rangappa, D. Mater. Res. Bull. 2017, 94, 54; https://doi.org/10.1016/j.materresbull.2017.05.043.Search in Google Scholar
24. Chaudhary, K., Shaheen, N., Zulfiqar, S., Sarwar, M. I., Suleman, M., Agboola, P. O., Warsi, M. F. Synth. Met 2020, 269, 116526; https://doi.org/10.1016/j.synthmet.2020.116526.Search in Google Scholar
25. Salih, E., Mekawy, M., Hassan, R. Y. A., El-Sherbiny, I. M. J. Nanostruct. Chem. 2016, 6, 137; https://doi.org/10.1007/s40097-016-0188-z.Search in Google Scholar
26. Roy, N., Chakraborty, S. Mater. Today Proc. 2020, 2020.Search in Google Scholar
27. Mouzaia, F., Djouadi, D., Chelouche, A., Hammiche, L. Arab J. Basic Appl. Sci. 2020, 27, 423; https://doi.org/10.1080/25765299.2020.1833484.Search in Google Scholar
28. Yasin, G., Arif, M., Shakeel, M., Dun, Y., Zuo, Y., Khan, W. Q., Tang, Y., Khan, A., Nadeem, M. Adv. Eng. Mater. 2018, 20, 1701166; https://doi.org/10.1002/adem.201701166.Search in Google Scholar
29. Surekha, G., Krishnaiah, K. V., Ravi, N., Suvarna, R. P. J. Phys.: Conf. Ser.; IOP Publishing, 2020, 1495, 012012; https://doi.org/10.1088/1742-6596/1495/1/012012.Search in Google Scholar
30. Pugazhendhi, A. Integr. Med. Res. 2020, 9, 7013.10.1016/j.jmrt.2020.03.118Search in Google Scholar
31. Muangrat, W., Chodjarusawad, T. Solid State Phenom. 2020, 302, 45; https://doi.org/10.4028/www.scientific.net/ssp.302.45.Search in Google Scholar
32. Van-Phuc, D., Thuy-Diem-Thuy, H., Le, H. M., Van-Dong, N., Vinh-Ai, D., Hung, N. Q., Tuyen, L. A., Lee, S., Yi, J., Nguyen, T. D., Tan, L. V. RSC Adv. 2019, 9, 25847; https://doi.org/10.1039/c9ra04296b.Search in Google Scholar PubMed PubMed Central
33. Sengunthar, P., Balasubramanian, K. H. B. C. Appl. Phys. A 2020, 1.Search in Google Scholar
34. Yu, X., Huang, L., Wei, Y., Zhang, J., Zhao, Z., Dai, W., Yao, B. Mater. Res. Bull. 2015, 64, 410; https://doi.org/10.1016/j.materresbull.2015.01.009.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Facile synthesis and adsorption characteristics of a hybrid composite based on ethyl acetoacetate modified chitosan/calcium alginate/TiO2 for efficient recovery of Ni(II) from aqueous solution
- Spectroscopic characterization of biosynthesized lead oxide (PbO) nanoparticles and their applications in PVC/graphite-PbO nanocomposites
- Green and eco-friendly synthesis of TiO2 nanoparticles and their application for removal of cadmium from wastewater: reaction kinetics study
- Catalytic degradation of MO and MB dyes under solar and UV light irradiation using ZnO fabricated using Syzygium Cumini leaf extract
- Graphene-substrate fabricated oxides and zinc oxide catalysts for the degradation of the methylene blue in the industrial wastewater
Articles in the same Issue
- Frontmatter
- Original Papers
- Facile synthesis and adsorption characteristics of a hybrid composite based on ethyl acetoacetate modified chitosan/calcium alginate/TiO2 for efficient recovery of Ni(II) from aqueous solution
- Spectroscopic characterization of biosynthesized lead oxide (PbO) nanoparticles and their applications in PVC/graphite-PbO nanocomposites
- Green and eco-friendly synthesis of TiO2 nanoparticles and their application for removal of cadmium from wastewater: reaction kinetics study
- Catalytic degradation of MO and MB dyes under solar and UV light irradiation using ZnO fabricated using Syzygium Cumini leaf extract
- Graphene-substrate fabricated oxides and zinc oxide catalysts for the degradation of the methylene blue in the industrial wastewater