Abstract
Geometry optimization of gemcitabine was carried out by DFT with B3LYP/6-311++G(d,p) level in the gas phase. Chemical activity (electronegativity, electrophilicity, hardness, chemical softness and chemical potential) was predicted with the help of HOMO-LUMO energy values. Experimental FT-IR was recorded and computed values are also analyzed using the same level of DFT. A complete vibrational spectrum was made to analyze the potential energy distribution (PED). Stability of the molecule arising from the hyper-conjugative interaction was analyzed by the natural bond orbital (NBO). The molecular electrostatic potential map was used to detect the possible electrophilic and nucleophilic sites in the molecule. Nonisothermal decomposition of gemcitabine was carried out in an air atmosphere. The two decomposition steps of the molecule were analyzed kinetically by linear and nonlinear methods for elucidation of the kinetic triplet (Ea, ln A and f(α)) of the decomposition processes. Powder X-ray diffraction indicated that gemcitabine crystallizes in the monoclinic system (SG P2/m). Molecular docking studies were also described.
Acknowledgment
This work is a part of Ereen Adel Rezkallah M.Sc. thesis. The authors would like to thank Assiut University for the official technical and financial support.
References
1. C. M. Galmarini, J. R. Mackey, C. Dumontet, Lancet Oncol. 3 (2002) 415.10.1016/S1470-2045(02)00788-XSearch in Google Scholar
2. J. Carmichael, J. Walling, Eur. J. Cancer 33 (1997) S27.10.1016/S0959-8049(96)00392-9Search in Google Scholar
3. M. D. Shelley, A. Cleves, T. J. Wilt, M. D. Mason, BJU Int. 108 (2011) 168.10.1111/j.1464-410X.2011.10341.xSearch in Google Scholar PubMed
4. T. Walter, A. M. Horgan, M. McNamara, L. Mckeever, T. Min, D. Hedley, S. Serra, M. K. Krzyzanowska, E. Chen, H. Mackey, R. Feld, M. Moore, J. J. Knox, Eur. J. Cancer 49 (2013) 329.10.1016/j.ejca.2012.08.003Search in Google Scholar PubMed
5. G. Lombardi, F. Zustovich, F. Farinati, U. Cillo, A. Vitalel, G. Zanus, M. Donach, M. Farina, S. Zovato, D. Pastorelli, Cancer 117 (2011) 125.10.1002/cncr.25578Search in Google Scholar PubMed
6. A. Maraveyas, J. Waters, R. Roy, D. Fyfe, D. Propper, F. Lofts, J. Sgouros, E. Gardiner, K. Wedgwood, C. Ettelaie, G. Bozas, Eur. J. Cancer 48 (2012) 1283.10.1016/j.ejca.2011.10.017Search in Google Scholar PubMed
7. H. Q. Xiong, A. Rosenberg, A. LoBuglio, W. Schmidt, R. A. Wolff, J. Deustch, M. Needle, J. L. Abbruzzese, J. Clin. Oncol. 22 (2004) 2610.10.1200/JCO.2004.12.040Search in Google Scholar PubMed
8. J. E. Frampton, A. J. Wagstaff, Am. J. Cancer 4 (2006) 395.10.2165/00024669-200504060-00006Search in Google Scholar
9. L. de Sousa Cavalcante, G. Monterio, Eur. J. Pharmco. 741 (2014) 8.10.1016/j.ejphar.2014.07.041Search in Google Scholar PubMed
10. G. J. Peters, Gemcitabine: Mechanism of Action and Resistance, in: A. M. Bergman, G. J. Peters (Eds.): Deoxynucleoside Analogs in Cancer Therapy, Humana Press Inc., Totowa, NJ (2006), pp. 225–251.10.1007/978-1-59745-148-2Search in Google Scholar
11. G. R. Heal, Thermogravimetry and Derivative Thermogravimetry, in: P. J. Haines (Ed.): Principles of Thermal Analysis and Calorimetry, The Royal Society of Chemistry, Thomas Graham house, Cambridge (2002), pp. 10–54.10.1039/9781847551764-00010Search in Google Scholar
12. S. Davoudizadeh, M. Sarsabili, K. Khezri, Z. Phys. Chem. 231 (2017) 1543.10.1515/zpch-2016-0812Search in Google Scholar
13. K. Khezri, H. Mahdavi, Z. Phys. Chem. 230 (2016) 1499.10.1515/zpch-2015-0688Search in Google Scholar
14. K. Khezri, H. Alijani, Y. Fazli, Z. Phys. Chem. 230 (2016) 111.10.1515/zpch-2015-0638Search in Google Scholar
15. A. Khawam, D. R. Flangan, J. Pharm. Sci. 95 (2006) 472.10.1002/jps.20559Search in Google Scholar PubMed
16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2009).Search in Google Scholar
17. A. D. Becke, J. Chem. Phys. 98 (1993) 5648.10.1063/1.464913Search in Google Scholar
18. A. D. Becke, J. Chem. Phys. 104 (1996) 1040.10.1063/1.470829Search in Google Scholar
19. A. D. Becke, Phys. Rev. A 38 (1988) 3098.10.1103/PhysRevA.38.3098Search in Google Scholar
20. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785.10.1103/PhysRevB.37.785Search in Google Scholar
21. W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-VCH Verlag GmbH, Weinheim (2000).10.1002/3527600043Search in Google Scholar
22. P. C. Hariharan, J. A. Pople, Theor. Chim. Acta. 28 (1973) 213.10.1007/BF00533485Search in Google Scholar
23. R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 72 (1980) 650.10.1063/1.438955Search in Google Scholar
24. T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, J. Comput. Chem. 4 (1983) 294.10.1002/jcc.540040303Search in Google Scholar
25. S. Abdalla, Y. Umar, I. Mokhtar, Z. Phys. Chem. 230 (2016) 867.10.1515/zpch-2015-0700Search in Google Scholar
26. M. H. Jamr’oz, Vibrational Energy Distribution Analysis VEDA4, Warsaw (2004).Search in Google Scholar
27. R. Dennington, T. Keith, J. Millam, Gauss View, Version 5, Semichem Inc., Shawnee Mission, KS (2009).Search in Google Scholar
28. J. Rodriguez-Carvajal, Physica B 192 (1993) 55.10.1016/0921-4526(93)90108-ISearch in Google Scholar
29. A. E. Reed, L. A. Cartiss, F. K. Weinhold, Chem. Rev. 88 (1988) 899.10.1021/cr00088a005Search in Google Scholar
30. C. Wu, J. You, X. Wang, J. Anal. Appl. Pyrolysis 130 (2018) 118.10.1016/j.jaap.2018.01.019Search in Google Scholar
31. K. Fukui, Science 218 (1982) 747.10.1126/science.218.4574.747Search in Google Scholar PubMed
32. T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580.10.1002/jcc.22885Search in Google Scholar PubMed
33. B. Kosar, C. Albayrak, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 78 (2011) 160.10.1016/j.saa.2010.09.016Search in Google Scholar PubMed
34. R. G. Pearson, J. Org. Chem. 54 (1989) 1423.10.1021/jo00267a034Search in Google Scholar
35. P. Greelings, F. D. Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793.10.1021/cr990029pSearch in Google Scholar PubMed
36. P. Muniappan, R. Meenaskshi, G. Rajavel, M. Arivazhangan, Spectrochim. Acta A: Mol. Biomol. Spect. 117 (2014) 739.10.1016/j.saa.2013.08.049Search in Google Scholar PubMed
37. M. Kavimani, V. Balachandran, B. Narayana, K. Vanasundari, B. Revathi, Spectrochim. Acta A: Mol. Biomol. Spect. 190 (2018) 47.10.1016/j.saa.2017.09.005Search in Google Scholar PubMed
38. A. B. Becke, K. E. Edgecombe, J. Chem. Phys. 92 (1990) 5397.10.1063/1.458517Search in Google Scholar
39. M. Kavimani, V. Balachandran, B. Narayana, K. Vanasundari, B. Revathi, J. Mol. Struc. 1149 (2017) 59.10.1016/j.molstruc.2017.07.094Search in Google Scholar
40. R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Oxford University, Oxford (1990).10.1093/oso/9780198551683.001.0001Search in Google Scholar
41. R. F. W. Bader, Chem. Rev. 91 (1991) 893.10.1021/cr00005a013Search in Google Scholar
42. D. A. Kleinman, Phys. Rev. 126 (1962) 1977.10.1103/PhysRev.126.1977Search in Google Scholar
43. R. H. Abu-Eittah, N. G. Zaki, M. M. A. Mohamed, L. T. Kamel, J. Anal. Appl. Pyrolysis 77 (2006) 1.10.1016/j.jaap.2005.06.004Search in Google Scholar
44. G. Sudlow, D. J. Birkett, D. N. Wade, Mol. Pharmaco. 12 (1976) 1052.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/zpch-2018-1304).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Lead Remediation Using Smart Materials. A Review
- Hydrothermal Synthesis of Zinc Doped Nickel Ferrites: Evaluation of Structural, Magnetic and Dielectric Properties
- Structural, Dielectric and Magnetic Studies of Perovskite [Gd1−xMxCrO3 (M = La, Co, Bi)] Nanoparticles: Photocatalytic Degradation of Dyes
- Decolourization of Reactive Dye from Aqueous Solution using Electrocoagulation: Kinetics and Isothermal Study
- Kinetics and Equilibrium Studies of Eriobotrya Japonica: A Novel Adsorbent Preparation for Dyes Sequestration
- Preparation, Characterization and Evaluation of Curcumin Nanodispersions Using Three Different Methods – Novel Subcritical Water Conditions, Spontaneous Emulsification and Solvent Displacement
- DFT and Thermal Decomposition Studies on Gemcitabine
Articles in the same Issue
- Frontmatter
- Lead Remediation Using Smart Materials. A Review
- Hydrothermal Synthesis of Zinc Doped Nickel Ferrites: Evaluation of Structural, Magnetic and Dielectric Properties
- Structural, Dielectric and Magnetic Studies of Perovskite [Gd1−xMxCrO3 (M = La, Co, Bi)] Nanoparticles: Photocatalytic Degradation of Dyes
- Decolourization of Reactive Dye from Aqueous Solution using Electrocoagulation: Kinetics and Isothermal Study
- Kinetics and Equilibrium Studies of Eriobotrya Japonica: A Novel Adsorbent Preparation for Dyes Sequestration
- Preparation, Characterization and Evaluation of Curcumin Nanodispersions Using Three Different Methods – Novel Subcritical Water Conditions, Spontaneous Emulsification and Solvent Displacement
- DFT and Thermal Decomposition Studies on Gemcitabine