Home Anthracene Based AIE Active Probe for Colorimetric and Fluorimetric Detection of Cu2+ Ions
Article
Licensed
Unlicensed Requires Authentication

Anthracene Based AIE Active Probe for Colorimetric and Fluorimetric Detection of Cu2+ Ions

  • Abdullah G. Al-Sehemi , Ahmad Irfan , Mehboobali Pannipara EMAIL logo , Mohammed A. Assiri and Abul Kalam
Published/Copyright: October 30, 2018

Abstract

A novel aggregation induced emission (AIE) active anthracene based dihydroquinazolinone derivative (probe 1) has been synthesized and characterized by means of spectroscopic methods. The photophysical properties of this probe have been investigated in solvents of different polarity display that fluorescence states are of intramolecular charge transfer (ICT) character. Probe 1 show clear AIE behavior in water/THF mixture on reaching water fraction 95%. The AIE behavior of probe 1 have been exploited for the detection of metal ions in aqueous solution which reveals high selectivity and sensitivity towards Cu2+ ions by colorimetrically and function as a chemosensor in a remarkable turn-off fluorescence manner. Further, the experimental results were investigated by computational means by optimizing the ground state geometries of probe 1 and probe 1-Cu complex using density functional theory (DFT) at B3LYP/6-31G∗∗ and B3LYP/6-31G∗∗(LANL2DZ) levels of theory. Intra-molecular charge transfer was observed in probe 1 while ligand to metal charge transfer (LMCT) for probe 1-Cu complex.

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Group Project under grant number (R.G.P.1/15/38).

References

1. M. Ebrahimi, F. Rosei, Nat. Photonics 10 (2016) 434.10.1038/nphoton.2016.124Search in Google Scholar

2. Y. Sagara, S. Yamane, M. Mitani, C. Weder, T. Kato, Adv. Mater. 28 (2016) 1073.10.1002/adma.201502589Search in Google Scholar PubMed

3. V. Mahendran, K. Pasumpon, S. Thimmarayaperumal, P. Thilagar, S. Shanmugam, J. Org. Chem. 81 (2016) 3597.10.1021/acs.joc.6b00267Search in Google Scholar PubMed

4. T. Han, X. Feng, D. Chen, Y. Dong, J. Mater. Chem. C 3 (2015) 7446.10.1039/C5TC00891CSearch in Google Scholar

5. S. Varughese J. Mater. Chem. C 2 (2014) 3499.10.1039/c3tc32414aSearch in Google Scholar

6. J. Cornil, D. Beljonne, J. P. Calbert, J. L. Bredas, Adv. Mater. 13 (2001) 1053.10.1002/1521-4095(200107)13:14<1053::AID-ADMA1053>3.0.CO;2-7Search in Google Scholar

7. M. I. Klimant, O. S. Wolfbeis, T. Werner, Anal. Chim. Acta 462 (2002) 1.10.1016/S0003-2670(02)00234-9Search in Google Scholar

8. V. K. Gupta, A. K. Jain, G. Maheshwari, H. Langb, Z. Ishtaiwi, Sens. Actuators B: Chem. 117 (2006) 99.10.1016/j.snb.2005.11.003Search in Google Scholar

9. Y. Gao, X. Li, M. J. Serpe, RSC Adv. 5 (2015) 44074.10.1039/C5RA02306HSearch in Google Scholar

10. A. Kavanagh, R. Byrne, D. Diamond, K. J. Fraser, Membranes. 2 (2012) 16.10.3390/membranes2010016Search in Google Scholar PubMed

11. X. Chen, T. Pradhan, F. Wang, J. S. Kim, J. Yoon, Chem. Rev. 112 (2011) 1910.10.1021/cr200201zSearch in Google Scholar PubMed

12. Y. Yang, Q. Zhao, W. Feng, F. Li, Chem. Rev. 113 (2012) 192.10.1021/cr2004103Search in Google Scholar PubMed

13. S. Samanta, U. Manna, T. Ray, G. Das, Dalton Trans. 44 (2015) 18902.10.1039/C5DT03186ASearch in Google Scholar PubMed

14. R. Zhang, M. Gao, S. Bai, B. Liu, J. Mater. Chem. B 3 (2015) 1590.10.1039/C4TB01937GSearch in Google Scholar

15. M. Pannipara, A. G. Al-Sehemi, A. Kalam, A. M. Asiri, M. N. Arshad, Spectrochim. Acta A Mol. Biomol. Spectrosc. 183 (2017) 84.10.1016/j.saa.2017.04.045Search in Google Scholar PubMed

16. R. Li, S. Xiao, Y. Li, Q. Lin, R. Zhang, J. Zhao, C. Yang, K. Zou, D. S. Li, T. Yi, Chem. Sci. 5 (2014) 3922.10.1039/C4SC01243GSearch in Google Scholar

17. F. Han, R. Zhang, Z. Zhang, J. Su, Z. Ni, RSC Adv. 6 (2016) 68178.10.1039/C6RA14729ASearch in Google Scholar

18. R. R. Hu, E. Lager, A. Aguilar-Aguilar, J. Z. Liu, J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. C. Zhong, K. S. Wong, C. E. Pena, B. Z. Tang, J. Phys. Chem. C 113 (2009) 15845.10.1021/jp902962hSearch in Google Scholar

19. B. Tang, Y. Geng, J. W. Y. Lam, B. Li, X. Jing, X. Wang, F. Wang, A. Pakhomov, X. Zhang, Chem. Mater. 11 (1999) 1581.10.1021/cm9900305Search in Google Scholar

20. H. Auweter, H. Haberkorn, W. Heckmann, D. Horn, E. Lüddecke, J. Rieger, H. Weiss, Angew. Chem. Int. Ed. 38 (1999) 2188.10.1002/(SICI)1521-3773(19990802)38:15<2188::AID-ANIE2188>3.0.CO;2-#Search in Google Scholar

21. Y. Cao, M. Yang, Y. Wang, H. Zhou, Z. Jun, X. Zhang, J. Wu, Y. Tiana, Z. Wud, J. Mater. Chem. C 2 (2014) 3686.10.1039/C3TC32551BSearch in Google Scholar

22. A. Gogoi, S. Mukherjee, A. Ramesh, G. Das, Anion Anal. Chem. 87 (2015) 6974.10.1021/acs.analchem.5b01746Search in Google Scholar PubMed

23. W. Fang, G. Zhang, J. Chen, L. Kong, L. Yang, H. Bi, J. Yang, Sens. Actuators B Chem. 229 (2016) 338.10.1016/j.snb.2016.01.130Search in Google Scholar

24. D. Udhayakumari, S. Velmathi, P. Venkatesan, S.-P. Wu, J Lumin. 161 (2015) 411.10.1016/j.jlumin.2015.01.052Search in Google Scholar

25. S. Zhang, Q. Niu, L. Lan, T. Li, Sens. Actuators B Chem. 240 (2017) 793.10.1016/j.snb.2016.09.054Search in Google Scholar

26. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, third ed., Springer, New York (2006).10.1007/978-0-387-46312-4Search in Google Scholar

27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian-09, Revision A.1, Gaussian, Inc., Wallingford, CT (2009).Search in Google Scholar

28. W. Kohn, A. D. Becke, R. G. Parr, J. Phys. Chem. 100 (1996) 12974.10.1021/jp960669lSearch in Google Scholar

29. A. D. Becke, J. Chem. Phys. 98 (1993) 5648.10.1063/1.464913Search in Google Scholar

30. R. S. Sánchez-Carrera, V. Coropceanu, D. A. da Silva Filho, R. Friedlein, W. Osikowicz, R. Murdey, C. Suess, W. R. Salaneck, J.-L. Brédas, J. Phys. Chem. B 110 (2006) 18904.10.1021/jp057462pSearch in Google Scholar PubMed

31. A. Irfan, S. Muhammad, A. R. Chaudhry, A. G. Al-Sehemi, R. Jin, Optik – Intern. J. Light Elect. Optics. 149 (2017) 321.10.1016/j.ijleo.2017.09.065Search in Google Scholar

32. D. Guillaumont, S. Nakamura, Dyes Pigm. 46 (2000) 85.10.1016/S0143-7208(00)00030-9Search in Google Scholar

33. A. Irfan, A. G. Al-Sehemi, A. R. Chaudhry, S. Muhammad, Optik – Intern. J. Light Elect. Optics. 138 (2017) 349.10.1016/j.ijleo.2017.03.070Search in Google Scholar

34. A. Irfan, A. G. Al-Sehemi, A. R. Chaudhry, S. Muhammad, J. King Saud Uni. – Sci. 30 (2018) 458.10.1016/j.jksus.2017.03.010Search in Google Scholar

35. Y. Yang, M. N. Weaver, K. M. Merz, J. Phys. Chem. A 113 (2009) 9843.10.1021/jp807643pSearch in Google Scholar PubMed PubMed Central

36. G. Abbas, A. Hassan, A. Irfan, M. Mir, G. Wu, J. Struct. Chem. 56 (2015) 92.10.1134/S0022476615010138Search in Google Scholar

37. A. Irfan, J. Zhang, Y. Chang, Chem. Phys. Lett. 483 (2009) 143.10.1016/j.cplett.2009.10.037Search in Google Scholar

Received: 2018-04-23
Accepted: 2018-10-10
Published Online: 2018-10-30
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1215/html?lang=en
Scroll to top button