Abstract
Colloidal deposition of noble metal nanoparticles on oxidic supports is a recent approach for the fabrication of heterogeneous catalyst materials. We present studies on the interaction of different amine ligands with gold nanoparticles before and after deposition on several oxidic supports (titania, silica, alumina, magnesia or zinc oxide), using X-ray photoelectron and Auger spectroscopy, and high-resolution transmission electron microscopy. The adsorption of amines on thin gold films as well as on nanoparticles leads to a decrease in metal photoelectron binding energies. Usually, this is explained by donor-acceptor interactions via the amine group. By additional analysis of Auger signals, which are more sensitive to changes in the oxidation state than photoelectron spectra, we demonstrate that these shifts are due to a final state effect, namely, the increased photoelectron hole screening in presence of amine adsorbates. It will be shown, that this effect is not sensitive neither to the nanoparticle size nor the sterical properties of the capping amine. After deposition on oxide supports, the photoelectron binding energies are even further decreased. The presented findings exhibit that care has to be taken to interpret binding energy shifts simply with charging, which has impact on understanding the local electronic situation on the surface of metal-loaded oxides, crucial for heterogeneous catalysis.
Acknowledgment
Hereby, we want to thank Pascal Buhani for providing additional data on ODA capped gold nanoparticles and Erhard Rhiel, Ute Friedrich und Edith Kieselhorst for assistance in the electron microscopy facility and Carsten Dosche for technical support related to XPS.
The JEOL JEM2100F electron microscope and the Thermo Fisher ESCALAB 250Xi spectrometer were funded by the Deutsche Forschungsgesellschaft (INST 184/106-1 FUGG and INST 184/144-1 FUGG). This support is gratefully acknowledged.
References
1. M. Haruta, Nature 437 (2005) 1098.10.1038/4371098aSearch in Google Scholar
2. M.-C. Daniel, D. Astruc, Chem. Rev. 104 (2004) 293.10.1021/cr030698+Search in Google Scholar
3. A. Arcadi, Chem. Rev. 108 (2008) 3266.10.1021/cr068435dSearch in Google Scholar
4. G. A. Somorjai, J. Y. Park, Chem. Soc. Rev. 37 (2008) 2155.10.1039/b719148kSearch in Google Scholar
5. A. T. Bell, Science 299 (2003) 1688.10.1126/science.1083671Search in Google Scholar
6. J. Libuda, H.-J. Freund, Surf. Sci. Rep. 57 (2005) 157.10.1016/j.surfrep.2005.03.002Search in Google Scholar
7. M. Haruta, Catal. Today 36 (1997) 153.10.1016/S0920-5861(96)00208-8Search in Google Scholar
8. W.-L. Yim, T. Nowitzki, M. Necke, H. Schnars, P. Nickut, J. Biener, M. M. Biener, V. Zielasek, K. Al-Shamery, T. Klüner, M. Bäumer, J. Phys. Chem. C 111 (2007) 445.10.1021/jp0665729Search in Google Scholar
9. A. Villa, D. Wang, D. Su, L. Prati, Catal. Sci. Technol. 5 (2015) 55.10.1039/C4CY00976BSearch in Google Scholar
10. X. Y. Liu, A. Wang, T. Zhang, C.-Y. Mou, Nano Today 8 (2013) 403.10.1016/j.nantod.2013.07.005Search in Google Scholar
11. N. C. Bigall, W. J. Parak, D. Dorfs, Nano Today 7 (2012) 282.10.1016/j.nantod.2012.06.007Search in Google Scholar
12. N. C. Bigall, A.-K. Herrmann, M. Vogel, M. Rose, P. Simon, W. Carrillo-Cabrera, D. Dorfs, S. Kaskel, N. Gaponik, A. Eychmüller, Angew. Chem. Int. Ed. 48 (2009) 9731.10.1002/anie.200902543Search in Google Scholar PubMed
13. M. Comotti, W.-C. Li, B. Spliethoff, F. Schüth, J. Am. Chem. Soc. 128 (2006) 917.10.1021/ja0561441Search in Google Scholar PubMed
14. M. Stratakis, H. Garcia, Chem. Rev. 112 (2012) 4469.10.1021/cr3000785Search in Google Scholar PubMed
15. M. C. Kung, R. J. Davis, H. H. Kung, J. Phys. Chem. C 111 (2007) 11767.10.1021/jp072102iSearch in Google Scholar
16. M. Osmić, J. Kolny-Olesiak, K. Al-Shamery, CrystEngComm 16 (2014) 9907.10.1039/C4CE01342ESearch in Google Scholar
17. H. Borchert, D. Fenske, J. Kolny-Olesiak, J. Parisi, K. Al-Shamery, M. Bäumer, Angew. Chem. Int. Ed. 46 (2007) 2923.10.1002/anie.200604460Search in Google Scholar PubMed
18. L. Mohrhusen, M. Osmić, RSC Adv. 7 (2017) 12897.10.1039/C6RA27454DSearch in Google Scholar
19. D. Fenske, P. Sonström, J. Stöver, X. Wang, H. Borchert, J. Parisi, J. Kolny-Olesiak, M. Bäumer, K. Al-Shamery, ChemCatChem 2 (2010) 198.10.1002/cctc.200900232Search in Google Scholar
20. J. C. Matsubu, S. Zhang, L. DeRita, N. S. Marinkovic, J. G. Chen, G. W. Graham, X. Pan, P. Christopher, Nat. Chem. 9 (2017) 120.10.1038/nchem.2607Search in Google Scholar PubMed
21. X. Wang, P. Sonström, D. Arndt, J. Stöver, V. Zielasek, H. Borchert, K. Thiel, K. Al-Shamery, M. Bäumer, J. Catal. 278 (2011) 143.10.1016/j.jcat.2010.11.020Search in Google Scholar
22. L. Altmann, S. Kunz, M. Bäumer, J. Phys. Chem. C 118 (2014) 8925.10.1021/jp4116707Search in Google Scholar
23. S. J. Tauster, Acc. Chem. Res. 20 (2002) 389.10.1021/ar00143a001Search in Google Scholar
24. M. Ahmadi, H. Mistry, B. Roldan Cuenya, J. Phys. Chem. Lett. 7 (2016) 3519.10.1021/acs.jpclett.6b01198Search in Google Scholar
25. N. R. Jana, X. Peng, J. Am. Chem. Soc. 125 (2003) 14280.10.1021/ja038219bSearch in Google Scholar
26. H. Bönnemann, W. Brijoux, W. R. Moser (Ed), Advanced Catalysts and Nanostructured Materials. Modern Synthetic Methods, Academic Press, San Diego (1996).Search in Google Scholar
27. B.-H. Chen, J. M. White, J. Phys. Chem. 86 (1982) 3534.10.1021/j100215a010Search in Google Scholar
28. C. Arribas, D. R. Rueda, J. L. G. Fierro, Langmuir 7 (1991) 2682.10.1021/la00059a047Search in Google Scholar
29. J. F. Moulder, J. Chastain (Ed.), R. C. King (Ed.), Handbook of X-ray Photoelectron Spectroscopy. A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Perkin-Elmer, Eden Prairie, MN (1995).Search in Google Scholar
30. B. V. Crist, J. Surf. Anal. 4 (1998) 428.Search in Google Scholar
31. Z. Jiang, W. Zhang, L. Jin, X. Yang, F. Xu, J. Zhu, W. Huang, J. Phys. Chem. C 111 (2007) 12434.10.1021/jp073446bSearch in Google Scholar
32. C. R. Henry, Surf. Sci. Rep. 31 (1998) 231.10.1016/S0167-5729(98)00002-8Search in Google Scholar
33. D. Dalacu, J. E. Klemberg-Sapieha, L. Martinu, Surf. Sci. 472 (2001) 33.10.1016/S0039-6028(00)00919-5Search in Google Scholar
34. P. H. Citrin, G. K. Wertheim, Y. Baer, Phys. Rev. B 27 (1983) 3160.10.1103/PhysRevB.27.3160Search in Google Scholar
35. D. V. Leff, L. Brandt, J. R. Heath, Langmuir 12 (1996) 4723.10.1021/la960445uSearch in Google Scholar
36. C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, S. Mann, J. Mater. Chem. 12 (2002) 1765.10.1039/b200953fSearch in Google Scholar
37. S. I. Sanchez, M. W. Small, S. Sivaramakrishnan, J.-G. Wen, J.-M. Zuo, R. G. Nuzzo, Anal. Chem. 82 (2010) 2599.10.1021/ac902089fSearch in Google Scholar PubMed
38. A. Y. Klyushin, M. T. Greiner, X. Huang, T. Lunkenbein, X. Li, O. Timpe, M. Friedrich, M. Hävecker, A. Knop-Gericke, R. Schlögl, ACS Catal. 6 (2016) 3372.10.1021/acscatal.5b02631Search in Google Scholar
39. J. Knecht, R. Fischer, H. Overhof, F. Hensel, J. Chem. Soc. Chem. Commun. 21 (1978) 905.10.1039/C39780000905Search in Google Scholar
40. A. Zwijnenburg, A. Goossens, W. G. Sloof, M. W. J. Crajé, A. M. van der Kraan, L. Jos de Jongh, M. Makkee, J. A. Moulijn, J. Phys. Chem. B 106 (2002) 9853.10.1021/jp014723wSearch in Google Scholar
41. X. Liu, M.-H. Liu, Y.-C. Luo, C.-Y. Mou, S. D. Lin, H. Cheng, J.-M. Chen, J.-F. Lee, T.-S. Lin, J. Am. Chem. Soc. 134 (2012) 10251.10.1021/ja3033235Search in Google Scholar PubMed
42. N. Weiher, E. Bus, L. Delannoy, C. Louis, D. E. Ramaker, J. T. Miller, J. A. van Bokhoven, J. Catal. 240 (2006) 100.10.1016/j.jcat.2006.03.010Search in Google Scholar
43. J. Radnik, C. Mohr, P. Claus, Phys. Chem. Chem. Phys. 5 (2003) 172.10.1039/b207290dSearch in Google Scholar
44. D. Ding, K. Liu, S. He, C. Gao, Y. Yin, Nano Lett. 14 (2014) 6731.10.1021/nl503585mSearch in Google Scholar
45. P. Claus, A. Brückner, C. Mohr, H. Hofmeister, J. Am. Chem. Soc. 122 (2000) 11430.10.1021/ja0012974Search in Google Scholar
46. W. Shockley, Phys. Rev. 56 (1939) 317.10.1103/PhysRev.56.317Search in Google Scholar
47. I. Barke, H. Hövel, Phys. Rev. Lett. 90 (2003) 166801.10.1103/PhysRevLett.90.166801Search in Google Scholar
48. B. Yan, B. Stadtmüller, N. Haag, S. Jakobs, J. Seidel, D. Jungkenn, S. Mathias, M. Cinchetti, M. Aeschlimann, C. Felser, Nat. Commun. 6 (2015) 10167.10.1038/ncomms10167Search in Google Scholar
49. J. Paul, S. Å. Lindgren, L. Walldén, Solid State Commun. 40 (1981) 395.10.1016/0038-1098(81)90846-2Search in Google Scholar
50. X. Lin, B. Yang, H.-M. Benia, P. Myrach, M. Yulikov, A. Aumer, M. A. Brown, M. Sterrer, O. Bondarchuk, E. Kieseritzky, J. Rocker, T. Risse, H.-J. Gao, N. Nilius, H.-J. Freund, J. Am. Chem. Soc. 132 (2010) 7745.10.1021/ja101188xSearch in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2018-0004).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Nanosized Matter
- Extinction Coefficient of Plasmonic Nickel Sulfide Nanocrystals and Gold-Nickel Sulfide Core-Shell Nanoparticles
- Thermal cis-to-trans Isomerization of Azobenzene Side Groups in Metal-Organic Frameworks investigated by Localized Surface Plasmon Resonance Spectroscopy
- Brightly Luminescent Cu-Zn-In-S/ZnS Core/Shell Quantum Dots in Salt Matrices
- Role of Tryptophan in Protein–Nanocrystals Interaction: Energy or Charge Transfer
- Synthesis of InP/ZnS Nanocrystals and Phase Transfer by Hydrolysis of Ester
- Amine Capped Gold Colloids at Oxidic Supports: Their Electronic Interactions
- Yolk Type Asymmetric Ag–Cu2O Hybrid Nanoparticles on Graphene Substrate as Efficient Electrode Material for Hybrid Supercapacitors
- Electrospun CuO Nanofibre Assemblies for H2S Sensing
- Review
- Two-Dimensional Oxides: Recent Progress in Nanosheets
Articles in the same Issue
- Frontmatter
- Editorial
- Nanosized Matter
- Extinction Coefficient of Plasmonic Nickel Sulfide Nanocrystals and Gold-Nickel Sulfide Core-Shell Nanoparticles
- Thermal cis-to-trans Isomerization of Azobenzene Side Groups in Metal-Organic Frameworks investigated by Localized Surface Plasmon Resonance Spectroscopy
- Brightly Luminescent Cu-Zn-In-S/ZnS Core/Shell Quantum Dots in Salt Matrices
- Role of Tryptophan in Protein–Nanocrystals Interaction: Energy or Charge Transfer
- Synthesis of InP/ZnS Nanocrystals and Phase Transfer by Hydrolysis of Ester
- Amine Capped Gold Colloids at Oxidic Supports: Their Electronic Interactions
- Yolk Type Asymmetric Ag–Cu2O Hybrid Nanoparticles on Graphene Substrate as Efficient Electrode Material for Hybrid Supercapacitors
- Electrospun CuO Nanofibre Assemblies for H2S Sensing
- Review
- Two-Dimensional Oxides: Recent Progress in Nanosheets