Abstract
The emergence of anti-microbial resistance (AMR) has become a pressing need for the design of novel and potential anti-microbial and anti-biofilm agents. Nano-scaled materials have been designed in the research domain to curb the populous spread of microbial biofilms. In the context of nano-scaled materials, metal nanoparticles are of unique importance and have been studied in detail for the treatment of biofilm propagation and menace. The crucial aspects of metal nanoparticles and their complexation with graphene have been extensively understood at the molecular level in this review article. The molecular interplay between the various external stimuli, like pH, temperature, sound, mechanical stimuli, and different external factors, on biofilm regulation has been studied and accentuated in the paper. The effect of such external factors succumbing to the biofilm-producing microbes, to the potential inhibitory activities of such novel nano-composites has been unraveled in the present review. Understanding the methodology behind nanoscaled treatments and their molecular mechanisms could pave the way for novel biofilm targeting strategies.
Acknowledgments
The authors thank the Centre for Nanoscience and Nanotechnology, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, and Chettinad Academy of Research & Education (CARE) for carrying out the work. DJM acknowledges Chettinad Academy of Research and Education for providing the PhD scholarship.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: KB and DJM equally contributed in conceptualization, data collection, original draft preparation. KG and AG have done data collection, writing original draft and review and writing the final draft. All the authors have given consent to communicate and publish this article.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The author states no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. O’Toole, G, Kaplan, HB, Kolter, R. Biofilm formation as microbial development. Annu Rev Microbiol 2000;54:49–79.10.1146/annurev.micro.54.1.49Search in Google Scholar PubMed
2. Venkatesan, N, Perumal, G, Doble, M. Bacterial resistance in biofilm-associated bacteria. Future Microbiol 2015;10:1743–50. https://doi.org/10.2217/fmb.15.69.Search in Google Scholar PubMed
3. Yin, W, Wang, Y, Liu, L, He, J. Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci 2019;20:3423. https://doi.org/10.3390/ijms20143423.Search in Google Scholar PubMed PubMed Central
4. Rabin, N, Zheng, Y, Opoku-Temeng, C, Du, Y, Bonsu, E, Sintim, HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 2015;7:493–512. https://doi.org/10.4155/fmc.15.6.Search in Google Scholar PubMed
5. Guo, H, Tong, Y, Cheng, J, Abbas, Z, Li, Z, Wang, J, et al.. Biofilm and small colony variants–an update on Staphylococcus aureus strategies toward drug resistance. Int J Mol Sci 2022;23:1241. https://doi.org/10.3390/ijms23031241.Search in Google Scholar PubMed PubMed Central
6. Del Pozo, JL. Biofilm-related disease. Expert Rev Anti-infect Ther 2018;16:51–65. https://doi.org/10.1080/14787210.2018.1417036.Search in Google Scholar PubMed
7. Pelling, H, Nzakizwanayo, J, Milo, S, Denham, E, MacFarlane, W, Bock, L, et al.. Bacterial biofilm formation on indwelling urethral catheters. Lett Appl Microbiol 2019;68:277–93. https://doi.org/10.1111/lam.13144.Search in Google Scholar PubMed
8. Kolpen, M, Kragh, KN, Enciso, JB, Faurholt-Jepsen, D, Lindegaard, B, Egelund, GB, et al.. Bacterial biofilms predominate in both acute and chronic human lung infections. Thorax 2022;77:1015–22. https://doi.org/10.1136/thoraxjnl-2021-217576.Search in Google Scholar PubMed PubMed Central
9. Pietrocola, G, Campoccia, D, Motta, C, Montanaro, L, Arciola, CR, Speziale, P. Colonization and infection of indwelling medical devices by Staphylococcus aureus with an emphasis on orthopedic implants. Int J Mol Sci 2022;23:5958. https://doi.org/10.3390/ijms23115958.Search in Google Scholar PubMed PubMed Central
10. Jamal, M, Ahmad, W, Andleeb, S, Jalil, F, Imran, M, Nawaz, MA, et al.. Bacterial biofilm and associated infections. J Chin Med Assoc 2018;81:7–11. https://doi.org/10.1016/j.jcma.2017.07.012.Search in Google Scholar PubMed
11. Malone, M, Bjarnsholt, T, McBain, AJ, James, GA, Stoodley, P, Leaper, D, et al.. The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J Wound Care 2017;26:20–5. https://doi.org/10.12968/jowc.2017.26.1.20.Search in Google Scholar PubMed
12. Gominet, M, Compain, F, Beloin, C, Lebeaux, D. Central venous catheters and biofilms: where do we stand in 2017? Apmis 2017;125:365–75. https://doi.org/10.1111/apm.12665.Search in Google Scholar PubMed
13. Ronchi, FC, Lourenço, UR, dos Santos, AS, Chamlian, EG. Febre de origem indeterminada em portador de marcapasso definitivo: Febre de origem indeterminada em portador de marcapasso definitivo. J Card Arrhythmias 2015;28:81–9.Search in Google Scholar
14. Rather, MA, Gupta, K, Mandal, M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol 2021:1–18. https://doi.org/10.1007/s42770-021-00624-x.Search in Google Scholar PubMed PubMed Central
15. Toyofuku, M, Inaba, T, Kiyokawa, T, Obana, N, Yawata, Y, Nomura, N. Environmental factors that shape biofilm formation. Biosci Biotechnol Biochem 2016;80:7–12. https://doi.org/10.1080/09168451.2015.1058701.Search in Google Scholar PubMed
16. Asma, ST, Imre, K, Morar, A, Herman, V, Acaroz, U, Mukhtar, H, et al.. An overview of biofilm formation–combating strategies and mechanisms of action of antibiofilm agents. Life 2022;12:1110. https://doi.org/10.3390/life12081110.Search in Google Scholar PubMed PubMed Central
17. Sakthi Devi, R, Girigoswami, A, Meenakshi, S, Deepika, B, Harini, K, Gowtham, P, et al.. Beneficial effects of bioinspired silver nanoparticles on zebrafish embryos including a gene expression study. ADMET and DMPK 2024;12:177–92. https://doi.org/10.5599/admet.2102.Search in Google Scholar PubMed PubMed Central
18. Sharon Sofini, PS, Biswas, K, Mercy, DJ, Girigoswami, A, Girigoswami, K. Nanostructure-assisted wound dressing materials: a literature review. Macromol Res 2024;32:1065–87.10.1007/s13233-024-00291-5Search in Google Scholar
19. Sharon Sofini, PS, Mercy, DJ, Raghavan, V, Isaac, JB, Deepika, B, Udayakumar, S, et al.. Evaluation of scarless wound healing through nanohydrogel infused with selected plant extracts. J Drug Deliv Sci Technol 2024;100:106118. https://doi.org/10.1016/j.jddst.2024.106118.Search in Google Scholar
20. Sathyaraj, WV, Prabakaran, L, Bhoopathy, J, Dharmalingam, S, Karthikeyan, R, Atchudan, R. Therapeutic efficacy of polymeric biomaterials in treating diabetic wounds–an upcoming wound healing Technology. Polymers 2023;15:1205. https://doi.org/10.3390/polym15051205.Search in Google Scholar PubMed PubMed Central
21. Jessy Mercy, D, Thirumalai, A, Udayakumar, S, Deepika, B, Janani, G, Girigoswami, A, et al.. Enhancing wound healing with nanohydrogel-entrapped plant extracts and nanosilver: an in vitro investigation. Molecules 2024;29:5004. https://doi.org/10.3390/molecules29215004.Search in Google Scholar PubMed PubMed Central
22. Janani, G, Girigoswami, A, Deepika, B, Udayakumar, S, Girigoswami, K. Unveiling the role of nano-formulated red algae extract in cancer management. Molecules 2024;29:2077. https://doi.org/10.3390/molecules29092077.Search in Google Scholar PubMed PubMed Central
23. Bhuin, A, Udayakumar, S, Gopalarethinam, J, Mukherjee, D, Girigoswami, K, Ponraj, C, et al.. Photocatalytic degradation of antibiotics and antimicrobial and anticancer activities of two-dimensional ZnO nanosheets. Sci Rep 2024;14:10406. https://doi.org/10.1038/s41598-024-59842-6.Search in Google Scholar PubMed PubMed Central
24. Janani, G, Girigoswami, A, Girigoswami, K. Supremacy of nanoparticles in the therapy of chronic myelogenous leukemia. ADMET and DMPK 2023;11:499–511. https://doi.org/10.5599/admet.2013.Search in Google Scholar PubMed PubMed Central
25. Thirumalai, A, Girigoswami, K, Harini, K, Kiran, V, Durgadevi, P, Girigoswami, A. Natural polymer derivative-based pH responsive nanoformulations entrapped diketo-tautomers of 5-fluorouracil for enhanced cancer therapy. ADMET and DMPK 2025:2554. https://doi.org/10.5599/admet.2554.Search in Google Scholar PubMed PubMed Central
26. Udayakumar, S, Metkar, SK, Girigoswami, A, Deepika, B, Janani, G, Kanakaraj, L, et al.. Exploring the amyloid degradation potential of nanoformulated carrageenan-bridging in vitro and in vivo perspectives. Int J Biol Macromol 2024;279:134814. https://doi.org/10.1016/j.ijbiomac.2024.134814.Search in Google Scholar PubMed
27. Pallavi, P, Harini, K, Crowder, S, Ghosh, D, Gowtham, P, Girigoswami, K, et al.. Rhodamine-conjugated anti-Stokes gold nanoparticles with higher ROS quantum yield as theranostic probe to arrest cancer and MDR bacteria. Appl Biochem Biotechnol 2023:1–15. https://doi.org/10.1007/s12010-023-04475-0.Search in Google Scholar PubMed
28. Thirumalai, A, Elboughdiri, N, Harini, K, Girigoswami, K, Girigoswami, A. Phosphorus-carrying cascade molecules: inner architecture to biomedical applications. Turk J Chem 2023;47:667–88. https://doi.org/10.55730/1300-0527.3570.Search in Google Scholar PubMed PubMed Central
29. Thirumalai, A, Harini, K, Pallavi, P, Gowtham, P, Girigoswami, K, Girigoswami, A. Bile salt-mediated surface-engineered bilosome-nanocarriers for delivering therapeutics. Nanomed J 2024;11:1–12.Search in Google Scholar
30. Vedakumari, SW, Prabu, P, Jancy, SJV, Pravin, YR, Manickavasagam, K, Sastry, TP. Radiopaque fibrin nanocomplex as a promising tool for X-ray imaging applications. Int J Biol Macromol 2022;200:285–92. https://doi.org/10.1016/j.ijbiomac.2021.12.164.Search in Google Scholar PubMed
31. Wu, J, Zhang, B, Lin, N, Gao, J. Recent nanotechnology-based strategies for interfering with the life cycle of bacterial biofilms. Biomater Sci 2023;11:1648–64. https://doi.org/10.1039/d2bm01783k.Search in Google Scholar PubMed
32. Mohamad, F, Alzahrani, RR, Alsaadi, A, Alrfaei, BM, Yassin, AEB, Alkhulaifi, MM, et al.. An explorative review on advanced approaches to overcome bacterial resistance by curbing bacterial biofilm formation. Infect Drug Resist 2023:19–49. https://doi.org/10.2147/idr.s380883.Search in Google Scholar
33. Wang, T, Cornel, EJ, Li, C, Du, J. Drug delivery approaches for enhanced antibiofilm therapy. J Contr Release 2023;353:350–65. https://doi.org/10.1016/j.jconrel.2022.12.002.Search in Google Scholar PubMed
34. Kuppusamy, S, Lakshmi, T, Surendar, A. Insilico interaction of bioactive compounds from clove against oral Candida albicans biofilm drug targets. European J Molecul Clinical Med 2021;8:537–49.Search in Google Scholar
35. Saraswathi, N, Girigoswami, K, Divya, KC, Kumar, SG, Girigoswami, A. Degree of gelatination on Ag-nanoparticles to inactivate multi-drug resistant bacterial biofilm isolated from sewage treatment plant. Curr Drug Deliv 2023;20:566–74. https://doi.org/10.2174/1567201819666220509160432.Search in Google Scholar PubMed
36. Girigoswami, K, Girigoswami, A. Encapsulation of beta-lactam antibiotic amoxicillin in chitosan-alginate nanohydrogels to improve antibacterial efficacy. Nanomed Res J 2023;8:335–44.Search in Google Scholar
37. Rajeshkumar, S, Menon, S, Kumar, SV, Tambuwala, MM, Bakshi, HA, Mehta, M, et al.. Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. J Photochem Photobiol B Biol 2019;197:111531. https://doi.org/10.1016/j.jphotobiol.2019.111531.Search in Google Scholar PubMed
38. Brar, B, Marwaha, S, Poonia, AK, Koul, B, Kajla, S, Rajput, VD. Nanotechnology: a contemporary therapeutic approach in combating infections from multidrug-resistant bacteria. Arch Microbiol 2023;205:62. https://doi.org/10.1007/s00203-023-03404-3.Search in Google Scholar PubMed
39. Novoselov, KS, Geim, AK, Morozov, SV, Jiang, D-E, Zhang, Y, Dubonos, SV, et al.. Electric field effect in atomically thin carbon films. Science 2004;306:666–9. https://doi.org/10.1126/science.1102896.Search in Google Scholar PubMed
40. Romero, FJ, Rivadeneyra, A, Ortiz-Gomez, I, Salinas, A, Godoy, A, Morales, DP, et al.. Inexpensive graphene oxide heaters lithographed by laser. Nanomaterials 2019;9:1184. https://doi.org/10.3390/nano9091184.Search in Google Scholar PubMed PubMed Central
41. Ferrigno, L, Cataldo, A, Sibilia, S, Maffucci, A, Bellucci, S. A monitorable and renewable pollution filter based on graphene nanoplatelets. Nanotechnology 2019;31:075701. https://doi.org/10.1088/1361-6528/ab5072.Search in Google Scholar PubMed
42. Biswas, K, De, D, Bandyopadhyay, J, Sen, P. Differential antibacterial response exhibited by graphene nanosheets toward gram-positive bacterium Staphylococcus aureus. IET Nanobiotechnol 2018;12:733–40. https://doi.org/10.1049/iet-nbt.2017.0200.Search in Google Scholar PubMed PubMed Central
43. Gurunathan, S, Han, JW, Dayem, AA, Eppakayala, V, Kim, J-H. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomed 2012:5901–14. https://doi.org/10.2147/ijn.s37397.Search in Google Scholar PubMed PubMed Central
44. Gurunathan, S, Han, JW, Dayem, AA, Eppakayala, V, Park, M-R, Kwon, D-N, et al.. Antibacterial activity of dithiothreitol reduced graphene oxide. J Ind Eng Chem 2013;19:1280–8. https://doi.org/10.1016/j.jiec.2012.12.029.Search in Google Scholar
45. Pulingam, T, Thong, KL, Appaturi, JN, Nordin, NI, Dinshaw, IJ, Lai, CW, et al.. Synergistic antibacterial actions of graphene oxide and antibiotics towards bacteria and the toxicological effects of graphene oxide on human epidermal keratinocytes. Eur J Pharmaceut Sci 2020;142:105087. https://doi.org/10.1016/j.ejps.2019.105087.Search in Google Scholar PubMed
46. Nasirzadeh, N, Azari, MR, Rasoulzadeh, Y, Mohammadian, Y. An assessment of the cytotoxic effects of graphene nanoparticles on the epithelial cells of the human lung. Toxicol Ind Health 2019;35:79–87. https://doi.org/10.1177/0748233718817180.Search in Google Scholar PubMed
47. Zainal-Abidin, MH, Hayyan, M, Ngoh, GC, Wong, WF. From nanoengineering to nanomedicine: a facile route to enhance biocompatibility of graphene as a potential nano-carrier for targeted drug delivery using natural deep eutectic solvents. Chem Eng Sci 2019;195:95–106. https://doi.org/10.1016/j.ces.2018.11.013.Search in Google Scholar
48. Khan, B, Adeleye, AS, Burgess, RM, Russo, SM, Ho, KT. Effects of graphene oxide nanomaterial exposures on the marine bivalve, Crassostrea virginica. Aquat Toxicol 2019;216:105297. https://doi.org/10.1016/j.aquatox.2019.105297.Search in Google Scholar PubMed PubMed Central
49. Akhavan, O, Ghaderi, E, Esfandiar, A. Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J Phys Chem B 2011;115:6279–88. https://doi.org/10.1021/jp200686k.Search in Google Scholar PubMed
50. Sengupta, I, Bhattacharya, P, Talukdar, M, Neogi, S, Pal, SK, Chakraborty, S. Bactericidal effect of graphene oxide and reduced graphene oxide: influence of shape of bacteria. Colloid and Interface Sci Commun 2019;28:60–8. https://doi.org/10.1016/j.colcom.2018.12.001.Search in Google Scholar
51. Dat, NM, Long, PNB, Nhi, DCU, Minh, NN, Duy, LM, Quan, LN, et al.. Synthesis of silver/reduced graphene oxide for antibacterial activity and catalytic reduction of organic dyes. Synth Met 2020;260:116260. https://doi.org/10.1016/j.synthmet.2019.116260.Search in Google Scholar
52. Bentley, SD, Aanensen, DM, Mavroidi, A, Saunders, D, Rabbinowitsch, E, Collins, M, et al.. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet 2006;2:e31. https://doi.org/10.1371/journal.pgen.0020031.Search in Google Scholar PubMed PubMed Central
53. Soliman, M, Sadek, AA, Abdelhamid, HN, Hussein, K. Graphene oxide-cellulose nanocomposite accelerates skin wound healing. Res Vet Sci 2021;137:262–73. https://doi.org/10.1016/j.rvsc.2021.05.013.Search in Google Scholar PubMed
54. Fedtke, I, Mader, D, Kohler, T, Moll, H, Nicholson, G, Biswas, R, et al.. A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol Microbiol 2007;65:1078–91. https://doi.org/10.1111/j.1365-2958.2007.05854.x.Search in Google Scholar PubMed PubMed Central
55. Weidenmaier, C, Peschel, A. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 2008;6:276–87. https://doi.org/10.1038/nrmicro1861.Search in Google Scholar PubMed
56. Weidenmaier, C, Kokai-Kun, JF, Kristian, SA, Chanturiya, T, Kalbacher, H, Gross, M, et al.. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 2004;10:243–5. https://doi.org/10.1038/nm991.Search in Google Scholar PubMed
57. Ge, Z, Yang, L, Xiao, F, Wu, Y, Yu, T, Chen, J, et al.. Graphene family nanomaterials: properties and potential applications in dentistry. Int J Biomater 2018;2018:1539678. https://doi.org/10.1155/2018/1539678.Search in Google Scholar PubMed PubMed Central
58. Branda, SS, Chu, F, Kearns, DB, Losick, R, Kolter, R. A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 2006;59:1229–38. https://doi.org/10.1111/j.1365-2958.2005.05020.x.Search in Google Scholar PubMed
59. Stanley, NR, Lazazzera, BA. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-dl-glutamic acid production and biofilm formation. Mol Microbiol 2005;57:1143–58. https://doi.org/10.1111/j.1365-2958.2005.04746.x.Search in Google Scholar PubMed
60. Al-Shawi, SG, Andreevna Alekhina, N, Aravindhan, S, Thangavelu, L, Elena, A, Viktorovna Kartamysheva, N, et al.. Synthesis of NiO nanoparticles and sulfur, and nitrogen co doped-graphene quantum dots/nio nanocomposites for antibacterial application. J Nanostruct 2021;11:181–8.Search in Google Scholar
61. O’Gara, JP. Ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS (Fed Eur Microbiol Soc) Microbiol Lett 2007;270:179–88. https://doi.org/10.1111/j.1574-6968.2007.00688.x.Search in Google Scholar PubMed
62. Yuan, W, Gu, Y, Li, L. Green synthesis of graphene/Ag nanocomposites. Appl Surf Sci 2012;261:753–8. https://doi.org/10.1016/j.apsusc.2012.08.094.Search in Google Scholar
63. Tran, HV, Chu, AD, Van Nguyen, T, Nguyen, ND, Le, TD, Huynh, CD. An investigation of silver nanoparticles formation under presence of graphene quantum dots as reducing reagent and stabilizer. Mater Trans 2018;59:1106–11. https://doi.org/10.2320/matertrans.md201713.Search in Google Scholar
64. Jin, H, Cai, M, Deng, F. Antioxidation effect of graphene oxide on silver nanoparticles and its use in antibacterial applications. Polymers 2023;15:3045. https://doi.org/10.3390/polym15143045.Search in Google Scholar PubMed PubMed Central
65. Lasa, I, Penadés, JR. Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 2006;157:99–107. https://doi.org/10.1016/j.resmic.2005.11.003.Search in Google Scholar PubMed
66. Latasa, C, Solano, C, Penadés, JR, Lasa, I. Biofilm-associated proteins. C R Biol 2006;329:849–57. https://doi.org/10.1016/j.crvi.2006.07.008.Search in Google Scholar PubMed
67. Cucarella, C, Solano, C, Valle, J, Amorena, B, Lasa, Í, Penadés, JR. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 2001;183:2888–96. https://doi.org/10.1128/jb.183.9.2888-2896.2001.Search in Google Scholar
68. Corrigan, RM, Rigby, D, Handley, P, Foster, TJ. The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology 2007;153:2435–46. https://doi.org/10.1099/mic.0.2007/006676-0.Search in Google Scholar PubMed
69. Schroeder, K, Jularic, M, Horsburgh, SM, Hirschhausen, N, Neumann, C, Bertling, A, et al.. Molecular characterization of a novel Staphylococcus aureus surface protein (SasC) involved in cell aggregation and biofilm accumulation. PLoS One 2009;4:e7567. https://doi.org/10.1371/journal.pone.0007567.Search in Google Scholar PubMed PubMed Central
70. Vélez, MP, Petrova, MI, Lebeer, S, Verhoeven, TLA, Claes, I, Lambrichts, I, et al.. Characterization of MabA, a modulator of Lactobacillus rhamnosus GG adhesion and biofilm formation. FEMS Immunol Med Microbiol 2010;59:386–98. https://doi.org/10.1111/j.1574-695x.2010.00680.x.Search in Google Scholar
71. Kim, KW, Song, W, Jung, MW, Kang, M-A, Kwon, SY, Myung, S, et al.. Au doping effect on chemically-exfoliated graphene and graphene grown via chemical vapor deposition. Carbon 2015;82:96–102. https://doi.org/10.1016/j.carbon.2014.10.036.Search in Google Scholar
72. Yang, L, Tseng, Y-T, Suo, G, Chen, L, Yu, J, Chiu, W-J, et al.. Photothermal therapeutic response of cancer cells to aptamer–gold nanoparticle-hybridized graphene oxide under NIR illumination. ACS Appl Mater Interfaces 2015;7:5097–106. https://doi.org/10.1021/am508117e.Search in Google Scholar PubMed
73. Gobin, AM, Watkins, EM, Quevedo, E, Colvin, VL, West, JL. Near-infrared-resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic agent. Small 2010;6:745–52. https://doi.org/10.1002/smll.200901557.Search in Google Scholar PubMed PubMed Central
74. Rice, KC, Mann, EE, Endres, JL, Weiss, EC, Cassat, JE, Smeltzer, MS, et al.. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci 2007;104:8113–8. https://doi.org/10.1073/pnas.0610226104.Search in Google Scholar PubMed PubMed Central
75. Harmsen, M, Lappann, M, Knøchel, S, Molin, S. Role of extracellular DNA during biofilm Formation by Listeria monocytogenes. Appl Environ Microbiol 2010;76:2271–9. https://doi.org/10.1128/AEM.02361-09.Search in Google Scholar PubMed PubMed Central
76. Jordan, SJ, Perni, S, Glenn, S, Fernandes, I, Barbosa, M. Listeria monocytogenes biofilm-associated protein (BapL) may contribute to surface attachment of L. monocytogenes but is absent from many field isolates. Appl Environ Microbiol 2008;74:5451–6. https://doi.org/10.1128/aem.02419-07.Search in Google Scholar
77. Vilain, S, Pretorius, JM, Theron, J, Brözel, VS. DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 2009;75:2861–8. https://doi.org/10.1128/aem.01317-08.Search in Google Scholar
78. Mann, EE, Rice, KC, Boles, BR, Endres, JL, Ranjit, D, Chandramohan, L, et al.. Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One 2009;4:e5822. https://doi.org/10.1371/journal.pone.0005822.Search in Google Scholar PubMed PubMed Central
79. Molin, S, Tolker-Nielsen, T. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 2003;14:255–61. https://doi.org/10.1016/s0958-1669-03-00036-3.Search in Google Scholar
80. Mulcahy, H, Charron-Mazenod, L, Lewenza, S. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 2008;4:e1000213. https://doi.org/10.1371/journal.ppat.1000213.Search in Google Scholar PubMed PubMed Central
81. Hemmi, H, Takeuchi, O, Kawai, T, Kaisho, T, Sato, S, Sanjo, H, et al.. A Toll-like receptor recognizes bacterial DNA. Nature 2000;408:740–5. https://doi.org/10.1038/35047123.Search in Google Scholar PubMed
82. Batoni, G, Maisetta, G, Esin, S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim et Biophys Acta (BBA) – Biomembr 2016;1858:1044–60. https://doi.org/10.1016/j.bbamem.2015.10.013.Search in Google Scholar PubMed
83. Wilton, M, Charron-Mazenod, L, Moore, R, Lewenza, S. Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2016;60:544–53. https://doi.org/10.1128/aac.01650-15.Search in Google Scholar PubMed PubMed Central
84. Beveridge, TJ. Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 1999;181:4725–33. https://doi.org/10.1128/jb.181.16.4725-4733.1999.Search in Google Scholar
85. Lee, K-J, Lee, M-A, Hwang, W, Park, H, Lee, K-H. Deacylated lipopolysaccharides inhibit biofilm formation by Gram-negative bacteria. Biofouling 2016;32:711–23. https://doi.org/10.1080/08927014.2016.1193595.Search in Google Scholar PubMed
86. Chalabaev, S, Chauhan, A, Novikov, A, Iyer, P, Szczesny, M, Beloin, C, et al.. Biofilms formed by gram-negative bacteria undergo increased lipid A palmitoylation, enhancing in vivo survival. mBio 2014;5. https://doi.org/10.1128/mbio.01116-14.Search in Google Scholar PubMed PubMed Central
87. Genevaux, P, Bauda, P, DuBow, MS, Oudega, B. Identification of Tn10 insertions in the rfaG, rfaP, and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion. Arch Microbiol 1999;172:1–8. https://doi.org/10.1007/s002030050732.Search in Google Scholar PubMed
88. Bennett-Guerrero, E, McIntosh, TJ, Barclay, GR, Snyder, DS, Gibbs, RJ, Mythen, MG, et al.. Preparation and preclinical evaluation of a novel liposomal complete-core lipopolysaccharide vaccine. Infect Immun 2000;68:6202–8. https://doi.org/10.1128/iai.68.11.6202-6208.2000.Search in Google Scholar
89. Heacock-Kang, Y, Zarzycki-Siek, J, Sun, Z, Poonsuk, K, Bluhm, AP, Cabanas, D, et al.. Novel dual regulators of Pseudomonas aeruginosa essential for productive biofilms and virulence. Mol Microbiol 2018;109:401–14. https://doi.org/10.1111/mmi.14063.Search in Google Scholar PubMed PubMed Central
90. Makin, SA, Beveridge, TJ. The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 1996;142:299–307. https://doi.org/10.1099/13500872-142-2-299.Search in Google Scholar PubMed
91. Kim, H-S, Ham, S-Y, Ryoo, H-S, Kim, D-H, Yun, E-T, Park, H-D, et al.. Inhibiting bacterial biofilm formation by stimulating c-di-GMP regulation using citrus peel extract from Jeju Island. Sci Total Environ 2023;872:162180. https://doi.org/10.1016/j.scitotenv.2023.162180.Search in Google Scholar PubMed
92. Pesci, EC, Pearson, JP, Seed, PC, Iglewski, BH. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 1997;179:3127–32. https://doi.org/10.1128/jb.179.10.3127-3132.1997.Search in Google Scholar PubMed PubMed Central
93. Fazli, M, Almblad, H, Rybtke, ML, Givskov, M, Eberl, L, Tolker-Nielsen, T. Regulation of biofilm formation in seudomonas and urkholderia species. Environ Microbiol 2014;16:1961–81. https://doi.org/10.1111/1462-2920.12448.Search in Google Scholar PubMed
94. Fechter, P, Caldelari, I, Lioliou, E, Romby, P. Novel aspects of RNA regulation in Staphylococcus aureus. FEBS Letters 2014;588:2523–9. https://doi.org/10.1016/j.febslet.2014.05.037.Search in Google Scholar PubMed
95. Silby, MW, Winstanley, C, Godfrey, SAC, Levy, SB, Jackson, RW. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 2011;35:652–80. https://doi.org/10.1111/j.1574-6976.2011.00269.x.Search in Google Scholar PubMed
96. Ammons, MCB, Ward, LS, Fisher, ST, Wolcott, RD, James, GA. In vitro susceptibility of established biofilms composed of a clinical wound isolate of Pseudomonas aeruginosa treated with lactoferrin and xylitol. Int J Antimicrob Agents 2009;33:230–6. https://doi.org/10.1016/j.ijantimicag.2008.08.013.Search in Google Scholar PubMed PubMed Central
97. Singh, PK, Schaefer, AL, Parsek, MR, Moninger, TO, Welsh, MJ, Greenberg, EP. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 2000;407:762–4. https://doi.org/10.1038/35037627.Search in Google Scholar PubMed
98. Pearson, JP, Gray, KM, Passador, L, Tucker, KD, Eberhard, A, Iglewski, BH, et al.. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci 1994;91:197–201. https://doi.org/10.1073/pnas.91.1.197.Search in Google Scholar PubMed PubMed Central
99. Pearson, JP, Passador, L, Iglewski, BH, Greenberg, EP. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci 1995;92:1490–4. https://doi.org/10.1073/pnas.92.5.1490.Search in Google Scholar PubMed PubMed Central
100. Mashburn-Warren, L, Howe, J, Garidel, P, Richter, W, Steiniger, F, Roessle, M, et al.. Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol Microbiol 2008;69:491–502. https://doi.org/10.1111/j.1365-2958.2008.06302.x.Search in Google Scholar PubMed PubMed Central
101. Kulkarni, HM, Jagannadham, MV. Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology 2014;160:2109–21. https://doi.org/10.1099/mic.0.079400-0.Search in Google Scholar PubMed
102. Wade, DS, Calfee, MW, Rocha, ER, Ling, EA, Engstrom, E, Coleman, JP, et al.. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 2005;187:4372–80. https://doi.org/10.1128/JB.187.13.4372-4380.2005.Search in Google Scholar PubMed PubMed Central
103. Tielker, D, Hacker, S, Loris, R, Strathmann, M, Wingender, J, Wilhelm, SD, et al.. Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 2005;151:1313–23. https://doi.org/10.1099/mic.0.27701-0.Search in Google Scholar PubMed
104. Diggle, SP, Stacey, RE, Dodd, C, Cámara, M, Williams, P, Winzer, K. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ Microbiol 2006;8:1095–104. https://doi.org/10.1111/j.1462-2920.2006.001001.x.Search in Google Scholar PubMed
105. Banin, E, Vasil, ML, Greenberg, EP. Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci 2005;102:11076–81. https://doi.org/10.1073/pnas.0504266102.Search in Google Scholar PubMed PubMed Central
106. Hengge, R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 2009;7:263–73. https://doi.org/10.1038/nrmicro2109.Search in Google Scholar PubMed
107. Güvener, ZT, Harwood, CS. Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces. Mol Microbiol 2007;66:1459–73. https://doi.org/10.1111/j.1365-2958.2007.06008.x.Search in Google Scholar PubMed PubMed Central
108. Malone, JG, Jaeger, T, Manfredi, P, Dötsch, A, Blanka, A, Bos, R, et al.. The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent Pseudomonas aeruginosa in cystic fibrosis airways. PLoS Pathog 2012;8:e1002760. https://doi.org/10.1371/journal.ppat.1002760.Search in Google Scholar PubMed PubMed Central
109. Ventre, I, Goodman, AL, Vallet-Gely, I, Vasseur, P, Soscia, C, Molin, S, et al.. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci 2006;103:171–6. https://doi.org/10.1073/pnas.0507407103.Search in Google Scholar PubMed PubMed Central
110. Goodman, AL, Merighi, M, Hyodo, M, Ventre, I, Filloux, A, Lory, S. Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Gene Dev 2009;23:249–59. https://doi.org/10.1101/gad.1739009.Search in Google Scholar PubMed PubMed Central
111. Petrova, OE, Sauer, K. The novel two-component regulatory system BfiSR regulates biofilm development by controlling the small RNA rsmZ through CafA. J Bacteriol 2010;192:5275–88. https://doi.org/10.1128/jb.00387-10.Search in Google Scholar PubMed PubMed Central
112. Irie, Y, Starkey, M, Edwards, AN, Wozniak, DJ, Romeo, T, Parsek, MR. Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol Microbiol 2010;78:158–72. https://doi.org/10.1111/j.1365-2958.2010.07320.x.Search in Google Scholar PubMed PubMed Central
113. Marden, JN, Diaz, MR, Walton, WG, Gode, CJ, Betts, L, Urbanowski, ML, et al.. An unusual CsrA family member operates in series with RsmA to amplify posttranscriptional responses in Pseudomonas aeruginosa. Proc Natl Acad Sci 2013;110:15055–60. https://doi.org/10.1073/pnas.1307217110.Search in Google Scholar PubMed PubMed Central
114. Chambers, JR, Sauer, K. Small RNAs and their role in biofilm formation. Trends Microbiol 2013;21:39–49. https://doi.org/10.1016/j.tim.2012.10.008.Search in Google Scholar PubMed PubMed Central
115. Sonnleitner, E, Gonzalez, N, Sorger-Domenigg, T, Heeb, S, Richter, AS, Backofen, R, et al.. The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal. Mol Microbiol 2011;80:868–85. https://doi.org/10.1111/j.1365-2958.2011.07620.x.Search in Google Scholar PubMed
116. Waite, RD, Paccanaro, A, Papakonstantinopoulou, A, Hurst, JM, Saqi, M, Littler, E, et al.. Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC Genom 2006;7:162. https://doi.org/10.1186/1471-2164-7-162.Search in Google Scholar PubMed PubMed Central
117. Amari, DT, Marques, CNH, Davies, DG. The putative enoyl-coenzyme A hydratase DspI is Required for Production of the Pseudomonas aeruginosa biofilm dispersion Autoinducer cis-2-Decenoic acid. J Bacteriol 2013;195:4600–10. https://doi.org/10.1128/jb.00707-13.Search in Google Scholar
118. Clarke, SR, Foster, SJ. Surface adhesins of Staphylococcus aureus. Adv Microb Physiol 2006;51:187–224. https://doi.org/10.1016/S0065-2911(06)51004-5.Search in Google Scholar PubMed
119. Pei, L, Palma, M, Nilsson, M, Guss, B, Flock, J-I. Functional studies of a fibrinogen binding protein from Staphylococcus epidermidis. Infect Immun 1999;67:4525–30. https://doi.org/10.1128/IAI.67.9.4525-4530.1999.Search in Google Scholar PubMed PubMed Central
120. Periasamy, S, Joo, H-S, Duong, AC, Bach, T-HL, Tan, VY, Chatterjee, SS, et al.. How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci 2012;109:1281–6. https://doi.org/10.1073/pnas.1115006109.Search in Google Scholar PubMed PubMed Central
121. Otto, M. Phenol-soluble modulins. Int J Medical Microbiol 2014;304:164–9. https://doi.org/10.1016/j.ijmm.2013.11.019.Search in Google Scholar PubMed PubMed Central
122. Vuong, C, Gerke, C, Somerville, GA, Fischer, ER, Otto, M. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 2003;188:706–18. https://doi.org/10.1086/377239.Search in Google Scholar PubMed
123. Ishihara, Y, Hyodo, M, Hayakawa, Y, Kamegaya, T, Yamada, K, Okamoto, A, et al.. Effect of cyclic bis(3′–5′)diguanylic acid and its analogs on bacterial biofilm formation. FEMS Microbiol Lett 2009;301:193–200. https://doi.org/10.1111/j.1574-6968.2009.01825.x.Search in Google Scholar PubMed PubMed Central
124. Holland, LM, O’Donnell, ST, Ryjenkov, DA, Gomelsky, L, Slater, SR, Fey, PD, et al.. A staphylococcal GGDEF domain protein regulates biofilm formation independently of cyclic dimeric GMP. J Bacteriol 2008;190:5178–89. https://doi.org/10.1128/jb.00375-08.Search in Google Scholar PubMed PubMed Central
125. Karaolis, DKR, Rashid, MH, Chythanya, R, Luo, W, Hyodo, M, Hayakawa, Y. c-di-GMP (3′-5′-cyclic diguanylic acid) inhibits Staphylococcus aureus cell-cell interactions and biofilm formation. Antimicrob Agents Chemother 2005;49:1029–38. https://doi.org/10.1128/aac.49.3.1029-1038.2005.Search in Google Scholar PubMed PubMed Central
126. Romilly, C, Caldelari, I, Parmentier, D, Lioliou, E, Romby, P, Fechter, P. Current knowledge on regulatory RNAs and their machineries in Staphylococcus aureus. RNA Biol 2012;9:402–13. https://doi.org/10.4161/rna.20103.Search in Google Scholar PubMed
127. Beenken, KE, Blevins, JS, Smeltzer, MS. Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect Immun 2003;71:4206–11. https://doi.org/10.1128/iai.71.7.4206-4211.2003.Search in Google Scholar
128. Tsang, LH, Cassat, JE, Shaw, LN, Beenken, KE, Smeltzer, MS. Factors contributing to the biofilm-deficient phenotype of Staphylococcus aureus sarA mutants. PLoS One 2008;3:e3361. https://doi.org/10.1371/journal.pone.0003361.Search in Google Scholar PubMed PubMed Central
129. Arya, R, Princy, SA. An insight into pleiotropic regulators agr and sar: molecular probes paving the new way for antivirulent therapy. Future Microbiol 2013;8:1339–53. https://doi.org/10.2217/fmb.13.92.Search in Google Scholar PubMed
130. Kullik, I, Giachino, P. The alternative sigma factor σB in Staphylococcus aureus: regulation of the sigB operon in response to growth phase and heat shock. Arch Microbiol 1997;167:151–9. https://doi.org/10.1007/s002030050428.Search in Google Scholar PubMed
131. Rachid, S, Ohlsen, K, Wallner, U, Hacker, J, Hecker, M, Ziebuhr, W. Alternative transcription factor ςB is involved in regulation of biofilm expression in a Staphylococcus aureus Mucosal isolate. J Bacteriol 2000;182:6824–6. https://doi.org/10.1128/jb.182.23.6824-6826.2000.Search in Google Scholar
132. MubarakAli, D, Saravanakumar, K, Ganeshalingam, A, Santosh, SS, De Silva, S, Park, JU, et al.. Recent progress in multifunctional stimuli-responsive combinational drug delivery systems for the treatment of biofilm-forming bacterial infections. Pharmaceutics 2024;16:976. https://doi.org/10.3390/pharmaceutics16080976.Search in Google Scholar PubMed PubMed Central
133. Comerci, CJ, Gillman, AL, Galera-Laporta, L, Gutierrez, E, Groisman, A, Larkin, JW, et al.. Localized electrical stimulation triggers cell-type-specific proliferation in biofilms. Cell Syst 2022;13:488–98.e4. https://doi.org/10.1016/j.cels.2022.04.001.Search in Google Scholar PubMed PubMed Central
134. Cui, X, Chen, C, Liu, Y, Zhou, D, Liu, M. Exogenous refractory protein enhances biofilm formation by altering the quorum sensing system: a potential hazard of soluble microbial proteins from WWTP effluent. Sci Total Environ 2019;667:384–9. https://doi.org/10.1016/j.scitotenv.2019.02.370.Search in Google Scholar PubMed
135. Cui, HS, Joo, SY, Cho, YS, Park, JH, Kim, J-B, Seo, CH. Effect of combining low temperature plasma, negative pressure wound therapy, and bone marrow mesenchymal stem cells on an acute skin wound healing mouse model. Int J Mol Sci 2020;21:3675. https://doi.org/10.3390/ijms21103675.Search in Google Scholar PubMed PubMed Central
136. Nahar, S, Mizan, MFR, Ha, AJ-W, Ha, S-D. Advances and future prospects of enzyme-based biofilm prevention approaches in the food industry. Compr Rev Food Sci Food Saf 2018;17:1484–502. https://doi.org/10.1111/1541-4337.12382.Search in Google Scholar PubMed
137. Roy, PK, Ha, AJ-W, Mizan, MFR, Hossain, MI, Ashrafudoulla, M, Toushik, SH, et al.. Effects of environmental conditions (temperature, pH, and glucose) on biofilm formation of Salmonella enterica serotype Kentucky and virulence gene expression. Poult Sci 2021;100:101209. https://doi.org/10.1016/j.psj.2021.101209.Search in Google Scholar PubMed PubMed Central
138. Kim, S, Li, XH, Hwang, HJ, Lee, JH. Thermoregulation of Pseudomonas aeruginosa biofilm formation. Appl Environ Microbiol 2020;86. https://doi.org/10.1128/aem.01584-20.Search in Google Scholar
139. Alabdullatif, M. Evaluating the effects of temperature and agitation on biofilm formation of bacterial pathogens isolated from raw cow milk. BMC Microbiol 2024;24:251. https://doi.org/10.1186/s12866-024-03403-4.Search in Google Scholar PubMed PubMed Central
140. van der Wielen, PWJJ, Dignum, M, Donocik, A, Prest, EI. Influence of temperature on growth of four different opportunistic pathogens in drinking water biofilms. Microorganisms 2023;11:1574. https://doi.org/10.3390/microorganisms11061574.Search in Google Scholar PubMed PubMed Central
141. Pinel, I, Biškauskaitė, R, Pal’ová, E, Vrouwenvelder, H, van Loosdrecht, M. Assessment of the impact of temperature on biofilm composition with a laboratory heat exchanger module. Microorganisms 2021;9:1185. https://doi.org/10.3390/microorganisms9061185.Search in Google Scholar PubMed PubMed Central
142. Racioppo, A, Speranza, B, Altieri, C, Sinigaglia, M, Corbo, MR, Bevilacqua, A. Ultrasound can increase biofilm formation by Lactiplantibacillus plantarum and Bifidobacterium spp. Front Microbiol 2023;14:1094671. https://doi.org/10.3389/fmicb.2023.1094671.Search in Google Scholar PubMed PubMed Central
143. Hafidha, K, Aicha, TTM, Drabo, M, Boubakeur, B. Ultrasound conditioning of Streptococcus thermophilus CNRZ 447: growth, biofilm formation, exopolysaccharide production, and cell membrane permeability. Biotechnologia 2020;101:159–65. https://doi.org/10.5114/bta.2020.94774.Search in Google Scholar
144. Yu, H, Lin, J, Wang, M, Ying, S, Yuan, S, Guo, Y, et al.. Molecular and proteomic response of Pseudomonas fluorescens biofilm cultured on lettuce (Lactuca sativa L.) after ultrasound treatment at different intensity levels. Food Microbiol 2024;117:104387. https://doi.org/10.1016/j.fm.2023.104387.Search in Google Scholar PubMed
145. Lin, F, Yuan, S, Ji, P, Xu, W. Regulation of bacterial biofilm formation by ultrasound: role of autoinducer-2 and finite-element analysis of acoustic streaming. Ultrasound Med Biol 2023;49:2191–8. https://doi.org/10.1016/j.ultrasmedbio.2023.06.016.Search in Google Scholar PubMed
146. Kvich, L, Christensen, MH, Pierchala, MK, Astafiev, K, Lou-Moeller, R, Bjarnsholt, T. The combination of low-frequency ultrasound and antibiotics improves the killing of in vitro Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Antibiotics 2022;11:1494. https://doi.org/10.3390/antibiotics11111494.Search in Google Scholar PubMed PubMed Central
147. Hazan, Z, Zumeris, J, Jacob, H, Raskin, H, Kratysh, G, Vishnia, M, et al.. Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves. Antimicrob Agents Chemother 2006;50:4144–52. https://doi.org/10.1128/aac.00418-06.Search in Google Scholar PubMed PubMed Central
148. Tang, M-X, Dyrma, S, Dong, T. Chapter 16 – stress responses modulate bacterial competitive fitness in polymicrobial communities. In: Fink, G, editor. Stress: Immunology and Inflammation. Australia: Academic Press; 2024:161–71 pp.10.1016/B978-0-12-817558-3.00003-2Search in Google Scholar
149. Pankratov, T, Nikolaev, Y, Yushina, Y, Tikhonova, E, El-Registan, G. Forms of bacterial survival in model biofilms. Coatings 2022;12:1913. https://doi.org/10.3390/coatings12121913.Search in Google Scholar
150. Rode, DKH, Singh, PK, Drescher, K. Multicellular and unicellular responses of microbial biofilms to stress. Biol Chem 2020;401:1365–74. https://doi.org/10.1515/hsz-2020-0213.Search in Google Scholar PubMed
151. Marx, P, Sang, Y, Qin, H, Wang, Q, Guo, R, Pfeifer, C, et al.. Environmental stress perception activates structural remodeling of extant Streptococcus mutans biofilms. npj Biofilms and Microbiome 2020;6:17. https://doi.org/10.1038/s41522-020-0128-z.Search in Google Scholar PubMed PubMed Central
152. Zhang, X, Li, Z, Pang, S, Jiang, B, Yang, Y, Duan, Q, et al.. The impact of cell structure, metabolism and group behavior for the survival of bacteria under stress conditions. Arch Microbiol 2021;203:431–41. https://doi.org/10.1007/s00203-020-02050-3.Search in Google Scholar PubMed
153. Behbahani, SB, Kiridena, SD, Wijayaratna, UN, Taylor, C, Anker, JN, Tzeng, TJ. pH variation in medical implant biofilms: causes, measurements, and its implications for antibiotic resistance. Front Microbiol 2022;13:1028560. https://doi.org/10.3389/fmicb.2022.1028560.Search in Google Scholar PubMed PubMed Central
154. Wang, X, Li, J, Zhang, S, Zhou, W, Zhang, L, Huang, X. pH-activated antibiofilm strategies for controlling dental caries. Front Cell Infect Microbiol 2023;13. https://doi.org/10.3389/fcimb.2023.1130506.Search in Google Scholar PubMed PubMed Central
155. Cao, Y, Jana, S, Bowen, L, Liu, H, Jakubovics, NS, Chen, J. Bacterial nanotubes mediate bacterial growth on periodic nano-pillars. Soft Matter 2020;16:7613–23. https://doi.org/10.1039/d0sm00602e.Search in Google Scholar PubMed
156. Ahmed, F, Mirani, ZA, Ahmed, A, Urooj, S, Khan, FZ, Siddiqi, A, et al.. Nanotubes Formation in P. aeruginosa. Cells 2022;11:3374. https://doi.org/10.3390/cells11213374.Search in Google Scholar PubMed PubMed Central
157. Velez, KEC, Leighton, RE, Decho, AW, Pinckney, JL, Norman, RS. Modeling pH and temperature effects as climatic hazards in Vibrio vulnificus and Vibrio parahaemolyticus planktonic growth and biofilm formation. GeoHealth 2023;7. https://doi.org/10.1029/2022gh000769.Search in Google Scholar
158. Rahim, MI, Szafrański, SP, Ingendoh-Tsakmakidis, A, Stiesch, M, Mueller, PP. Evidence for inoculum size and gas interfaces as critical factors in bacterial biofilm formation on magnesium implants in an animal model. Colloids Surf B Biointerfaces 2020;186:110684. https://doi.org/10.1016/j.colsurfb.2019.110684.Search in Google Scholar PubMed
159. Giulio, MD, Zappacosta, R, Lodovico, SD, Campli, ED, Siani, G, Fontana, A, et al.. Antimicrobial and antibiofilm efficacy of graphene oxide against chronic wound microorganisms. Antimicrob Agents Chemother 2018;62. https://doi.org/10.1128/aac.00547-18.Search in Google Scholar
160. Fallatah, H, Elhaneid, M, Ali-Boucetta, H, Overton, TW, El Kadri, H, Gkatzionis, K. Antibacterial effect of graphene oxide (GO) nano-particles against Pseudomonas putida biofilm of variable age. Environ Sci Pollut Control Ser 2019;26:25057–70. https://doi.org/10.1007/s11356-019-05688-9.Search in Google Scholar PubMed PubMed Central
161. Guo, Z, Xie, C, Zhang, P, Zhang, J, Wang, G, He, X, et al.. Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm. Sci Total Environ 2017;580:1300–8. https://doi.org/10.1016/j.scitotenv.2016.12.093.Search in Google Scholar PubMed
162. Song, C, Yang, C-M, Sun, X-F, Xia, P-F, Qin, J, Guo, B-B, et al.. Influences of graphene oxide on biofilm formation of Gram-negative and gram-positive bacteria. Environ Sci Pollut Control Ser 2018;25:2853–60. https://doi.org/10.1007/s11356-017-0616-8.Search in Google Scholar PubMed
163. Agarwalla, SV, Ellepola, K, Costa, MCFD, Fechine, GJM, Morin, JLP, Castro Neto, AH, et al.. Hydrophobicity of graphene as a driving force for inhibiting biofilm formation of pathogenic bacteria and fungi. Dent Mater 2019;35:403–13. https://doi.org/10.1016/j.dental.2018.09.016.Search in Google Scholar PubMed
164. Cao, G, Yan, J, Ning, X, Zhang, Q, Wu, Q, Bi, L, et al.. Antibacterial and antibiofilm properties of graphene and its derivatives. Colloids Surf B Biointerfaces 2021;200:111588. https://doi.org/10.1016/j.colsurfb.2021.111588.Search in Google Scholar PubMed
165. Mohanta, YK, Biswas, K, Jena, SK, Hashem, A, Abd_Allah, EF, Mohanta, TK. Anti-biofilm and antibacterial activities of silver nanoparticles synthesized by the reducing activity of phytoconstituents present in the Indian medicinal plants. Front Microbiol 2020;11. https://doi.org/10.3389/fmicb.2020.01143.Search in Google Scholar PubMed PubMed Central
166. Ali, SG, Ansari, MA, Alzohairy, MA, Alomary, MN, AlYahya, S, Jalal, M, et al.. Biogenic gold nanoparticles as potent antibacterial and antibiofilm nano-antibiotics against Pseudomonas aeruginosa. Antibiotics 2020;9:100. https://doi.org/10.3390/antibiotics9030100.Search in Google Scholar PubMed PubMed Central
167. Pasquet, J, Chevalier, Y, Pelletier, J, Couval, E, Bouvier, D, Bolzinger, M-A. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf A Physicochem Eng Asp 2014;457:263–74. https://doi.org/10.1016/j.colsurfa.2014.05.057.Search in Google Scholar
168. Jothiprakasam, V, Sambantham, M, Chinnathambi, S, Vijayaboopathi, S. Candida tropicalis biofilm inhibition by ZnO nanoparticles and EDTA. Arch Oral Biol 2017;73:21–4. https://doi.org/10.1016/j.archoralbio.2016.09.003.Search in Google Scholar PubMed
169. Yousef, JM, Danial, EN. In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. J Health Sci 2012;2:38–42.10.5923/j.health.20120204.04Search in Google Scholar
170. Campoccia, D, Montanaro, L, Arciola, CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013;34:8533–54. https://doi.org/10.1016/j.biomaterials.2013.07.089.Search in Google Scholar PubMed
171. Chen, M, Yu, Q, Sun, H. Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci 2013;14:18488–501. https://doi.org/10.3390/ijms140918488.Search in Google Scholar PubMed PubMed Central
172. Pei, ZJ, Li, C, Dai, W, Lou, Z, Sun, X, Wang, H, et al.. The anti-biofilm activity and mechanism of apigenin-7-O-glucoside against Staphylococcus aureus and Escherichia coli. Infect Drug Resist 2023;16:2129–40. https://doi.org/10.2147/idr.s387157.Search in Google Scholar PubMed PubMed Central
173. Li, Y, Wang, M, Li, Y, Hong, B, Kang, D, Ma, Y, et al.. Two novel antimicrobial peptides against vegetative cells, spores and biofilm of Bacillus cereus. Food Control 2023;149:109688. https://doi.org/10.1016/j.foodcont.2023.109688.Search in Google Scholar
174. Hijazi, DM, Dahabiyeh, LA, Abdelrazig, S, Alqudah, DA, Al-Bakri, AG. Micafungin effect on Pseudomonas aeruginosa metabolome, virulence and biofilm: potential quorum sensing inhibitor. AMB Express 2023;13:20. https://doi.org/10.1186/s13568-023-01523-0.Search in Google Scholar PubMed PubMed Central
175. Yu, X, Zhao, J, Ma, X, Fan, D. A multi-enzyme cascade microneedle reaction system for hierarchically MRSA biofilm elimination and diabetic wound healing. Chem Eng J 2023;465:142933. https://doi.org/10.1016/j.cej.2023.142933.Search in Google Scholar
176. Turabik, M, Özdemir, S, Akinbingol, G, Gonca, S, Gecgel, C. Comparison of antioxidant, antimicrobial, DNA cleavage, cell viability, and biofilm inhibition activities of mono- and bimetallic copper and zinc nanoparticles. Inorg Chem Commun 2023;155:111072. https://doi.org/10.1016/j.inoche.2023.111072.Search in Google Scholar
177. Bonincontro, G, Scuderi, SA, Marino, A, Simonetti, G. Synergistic effect of plant compounds in combination with conventional antimicrobials against biofilm of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida spp. Pharmaceuticals 2023;16:1531. https://doi.org/10.3390/ph16111531.Search in Google Scholar PubMed PubMed Central
178. Moliva, MV, Cariddi, LN, Pereyra, ER, Raviolo, JM, Sambuceti, N, Posadaz, A, et al.. Evaluation of antibacterial and antibiofilm properties of Minthostachys verticillata essential oils against bovine Staphylococcus aureus strains. Biocatal Agric Biotechnol 2023;50:102697. https://doi.org/10.1016/j.bcab.2023.102697.Search in Google Scholar
179. Jeong, G-J, Khan, F, Tabassum, N, Kim, Y-M. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa. Crit Rev Microbiol 2024;50:830–58. https://doi.org/10.1080/1040841x.2023.2282459.Search in Google Scholar
180. Korenaga, A, Miyaoka, T, Asami, H, Yamagami, Y, Yoshii, M, Tanaka, S, et al.. Synergetic inhibitory effect of isopropyl methylphenol-based agents on biofilm formation by Streptococcus mutans. PLoS One 2024;19:e0310926. https://doi.org/10.1371/journal.pone.0310926.Search in Google Scholar PubMed PubMed Central
181. Bagińska, N, Grygiel, I, Orwat, F, Harhala, MA, Jędrusiak, A, Gębarowska, E, et al.. Stability study in selected conditions and biofilm-reducing activity of phages active against drug-resistant Acinetobacter baumannii. Sci Rep 2024;14:4285. https://doi.org/10.1038/s41598-024-54469-z.Search in Google Scholar PubMed PubMed Central
182. Tortella, FG, Fincheira, P, Rubilar, O, Leiva, S, Fernandez, I, Schoebitz, M, et al.. Nanoparticle-based nitric oxide donors: exploring their antimicrobial and anti-biofilm capabilities. Antibiotics 2024;13:1047. https://doi.org/10.3390/antibiotics13111047.Search in Google Scholar PubMed PubMed Central
183. Perasoli, FB, B Silva, LS, C Figueiredo, BI, Pinto, IC, F Amaro, LJ, S Almeida Bastos, JC, et al.. Poly(methylmethacrylate-co-dimethyl acrylamide)–silver nanocomposite prevents biofilm formation in medical devices. Nanomedicine 2024;19:1285–96. https://doi.org/10.1080/17435889.2024.2345044.Search in Google Scholar PubMed PubMed Central
184. Nagaiah, HP, Kandaswamy, K, Priya, A, Kasthuri, T, Pandian, SK. Chapter 20 - biofilms associated with biomedical implants and combating therapies. In: Das, S, Kungwani, NA, editors. Understanding Microbial Biofilms. U.K.: Academic Press; 2023:335–53 pp.10.1016/B978-0-323-99977-9.00030-2Search in Google Scholar
185. Sarvari, R, Naghili, B, Agbolaghi, S, Abbaspoor, S, Bannazadeh Baghi, H, Poortahmasebi, V, et al.. Organic/polymeric antibiofilm coatings for surface modification of medical devices. Int J Polymeric Mater Polymeric Biomater 2023;72:867–908. https://doi.org/10.1080/00914037.2022.2066668.Search in Google Scholar
186. Lison, J, Taratuta, A, Paszenda, Z, Szindler, M, Basiaga, M. Perspectives in prevention of biofilm for medical applications. Coatings 2022;12:197. https://doi.org/10.3390/coatings12020197.Search in Google Scholar
187. Cao, Z, Pandit, S, Noa, FMA, Zhang, J, Gao, W, Rahimi, S, et al.. Mechano-bactericidal surfaces achieved by epitaxial growth of metal-organic frameworks. arXiv preprint arXiv:250316003. 2025.Search in Google Scholar
188. Jiang, Z, Fu, L, Wei, C, Fu, Q, Pan, S. Antibacterial micro/nanomotors: advancing biofilm research to support medical applications. J Nanobiotechnol 2023;21:388. https://doi.org/10.1186/s12951-023-02162-0.Search in Google Scholar PubMed PubMed Central
189. Jha, S, Anand, S. Development and control of biofilms: novel strategies using natural antimicrobials. Membranes 2023;13:579. https://doi.org/10.3390/membranes13060579.Search in Google Scholar PubMed PubMed Central
190. Almasri, D, Dahman, Y. Prosthetic joint infections: biofilm Formation, management, and the potential of mesoporous bioactive glass as a new treatment option. Pharmaceutics 2023;15:1401. https://doi.org/10.3390/pharmaceutics15051401.Search in Google Scholar PubMed PubMed Central
191. Abram, A, Zore, A, Lipovž, U, Košak, A, Gavras, M, Boltežar, Ž, et al.. Bacterial adhesion on prosthetic and orthotic material surfaces. Coatings 2021;11:1469. https://doi.org/10.3390/coatings11121469.Search in Google Scholar
192. Leonetti, S, Tuvo, B, Campanella, B, Legnaioli, S, Onor, M, Bramanti, E, et al.. Evaluation of microbial adhesion and biofilm formation on nano-structured and nano-coated ortho-prosthetic materials by a dynamic model. Int J Environ Res Publ Health 2020;17:1013. https://doi.org/10.3390/ijerph17031013.Search in Google Scholar PubMed PubMed Central
193. Macias-Valcayo, A, Aguilera-Correa, J-J, Broncano, A, Parron, R, Auñon, A, Garcia-Cañete, J, et al.. Comparative in vitro study of biofilm formation and antimicrobial susceptibility in gram-negative bacilli isolated from prosthetic joint infections. Microbiol Spectr 2022;10:e00851–22. https://doi.org/10.1128/spectrum.00851-22.Search in Google Scholar PubMed PubMed Central
194. Mishra, A, Aggarwal, A, Khan, F. Medical device-associated infections caused by biofilm-forming microbial pathogens and controlling strategies. Antibiotics 2024;13:623. https://doi.org/10.3390/antibiotics13070623.Search in Google Scholar PubMed PubMed Central
195. Stewart, PS, Bjarnsholt, T. Risk factors for chronic biofilm-related infection associated with implanted medical devices. Clin Microbiol Infection 2020;26:1034–8. https://doi.org/10.1016/j.cmi.2020.02.027.Search in Google Scholar PubMed
196. Babushkina, IV, Bondarenko, AS, Ulyanov, VY, Mamonova, IA. Biofilm Formation by gram-negative bacteria during implant-associated infection. Bull Exp Biol Med 2020;169:365–8. https://doi.org/10.1007/s10517-020-04888-5.Search in Google Scholar PubMed
197. Rodríguez-Merchán, EC, Davidson, DJ, Liddle, AD. Recent strategies to combat infections from biofilm-forming bacteria on orthopaedic implants. Int J Mol Sci 2021;22:10243. https://doi.org/10.3390/ijms221910243.Search in Google Scholar PubMed PubMed Central
198. Dong, J, Wang, B, Xiang, B, Yang, J, Gong, Z, Wang, Z, et al.. Research on the effect of TiO2 nanotubes coated by gallium nitrate on Staphylococcus aureus-Escherichia coli biofilm formation. J Clin Lab Anal 2020;34:e23417. https://doi.org/10.1002/jcla.23417.Search in Google Scholar PubMed PubMed Central
199. Sivaswamy, V, Neelakantan, P. Modern approaches to biofilm management on dental implants. In: Neelakantan, P, Princy Solomon, A, editors. Dental Implants and Oral Microbiome Dysbiosis: An Interdisciplinary Perspective. Switzerland: Springer International Publishing; 2022:61–73 pp.10.1007/978-3-030-99014-5_5Search in Google Scholar
200. Lee, SW, Phillips, KS, Gu, H, Kazemzadeh-Narbat, M, Ren, D. How microbes read the map: effects of implant topography on bacterial adhesion and biofilm formation. Biomaterials 2021;268:120595. https://doi.org/10.1016/j.biomaterials.2020.120595.Search in Google Scholar PubMed
201. Franco, R, Rosa, A, Lupi, E, Capogreco, M. The influence of dental implant roughness on biofilm formation: a comprehensive strategy. Dent Hypotheses 2023;14:90–2. https://doi.org/10.4103/denthyp.denthyp-67-23.Search in Google Scholar
202. Kligman, S, Ren, Z, Chung, C-H, Perillo, MA, Chang, Y-C, Koo, H, et al.. The impact of dental implant surface modifications on osseointegration and biofilm formation. J Clin Med 2021;10:1641. https://doi.org/10.3390/jcm10081641.Search in Google Scholar PubMed PubMed Central
203. Azzola, F, Ionescu, AC, Ottobelli, M, Cavalli, N, Brambilla, E, Corbella, S, et al.. Biofilm Formation on dental implant surface treated by implantoplasty: an in situ study. Dent J 2020;8:40. https://doi.org/10.3390/dj8020040.Search in Google Scholar PubMed PubMed Central
204. Bravo, E, Serrano, B, Ribeiro-Vidal, H, Virto, L, Sánchez, IS, Herrera, D, et al.. Biofilm formation on dental implants with a hybrid surface microtopography: an in vitro study in a validated multispecies dynamic biofilm model. Clin Oral Implants Res 2023;34:475–85. https://doi.org/10.1111/clr.14054.Search in Google Scholar PubMed
205. Minkiewicz-Zochniak, A, Jarzynka, S, Iwańska, A, Strom, K, Iwańczyk, B, Bartel, M, et al.. Biofilm Formation on dental implant biomaterials by Staphylococcus aureus strains isolated from patients with cystic fibrosis. Materials 2021;14:2030. https://doi.org/10.3390/ma14082030.Search in Google Scholar PubMed PubMed Central
206. Thakre, R, Bankar, N, Tiwade, Y, Mishra, V. The battle against biofilms: understanding the impact on medical devices and patient health. Rev Res Medical Microbiol 9900;36:95–101. https://doi.org/10.1097/mrm.0000000000000404.Search in Google Scholar
207. Negut, I, Albu, C, Bita, B. Advances in antimicrobial coatings for preventing infections of head-related implantable medical devices. Coatings 2024;14:256. https://doi.org/10.3390/coatings14030256.Search in Google Scholar
208. Barman, S, Kurnaz, LB, Leighton, R, Hossain, MW, Decho, AW, Tang, C. Intrinsic antimicrobial resistance: molecular biomaterials to combat microbial biofilms and bacterial persisters. Biomaterials 2024;311:122690. https://doi.org/10.1016/j.biomaterials.2024.122690.Search in Google Scholar PubMed PubMed Central
209. Esposito, MM, Glazer, JR, Turku, S. The use of 3D printing and nanotechnologies to prevent and inhibit biofilms on medical devices. Hygiene 2023;3:325–38. https://doi.org/10.3390/hygiene3030024.Search in Google Scholar
210. Kandaswamy, K, Subramanian, R, Giri, J, Guru, A, Arockiaraj, J. A robust strategy against multi-resistant pathogens in oral health: harnessing the potency of antimicrobial peptides in nanofiber-mediated therapies. Int J Pept Res Therapeut 2024;30:35. https://doi.org/10.1007/s10989-024-10613-x.Search in Google Scholar
211. Kadirvelu, L, Sivaramalingam, SS, Jothivel, D, Chithiraiselvan, DD, Karaiyagowder Govindarajan, D, Kandaswamy, K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. Curr Res Microb Sci 2024;6:100231. https://doi.org/10.1016/j.crmicr.2024.100231.Search in Google Scholar PubMed PubMed Central
212. Pan, Z, Dai, C, Li, W. Material-based treatment strategies against intraosseous implant biofilm infection. Biochem Biophys Rep 2024;39:101764. https://doi.org/10.1016/j.bbrep.2024.101764.Search in Google Scholar PubMed PubMed Central
213. Jiang, F, Wang, J, Ren, Z, Hu, Y, Wang, B, Li, M, et al.. Targeted light-induced immunomodulatory strategy for implant-associated infections via reversing biofilm-mediated immunosuppression. ACS Nano 2024;18:6990–7010. https://doi.org/10.1021/acsnano.3c10172.Search in Google Scholar PubMed
214. Tran, N, Tran, PA. Nanomaterial-based treatments for medical device-associated infections. ChemPhysChem 2012;13:2481–94. https://doi.org/10.1002/cphc.201200091.Search in Google Scholar PubMed
215. Hetrick, EM, Schoenfisch, MH. Reducing implant-related infections: active release strategies. Chem Soc Rev 2006;35:780–9. https://doi.org/10.1039/b515219b.Search in Google Scholar PubMed
216. Gnanadhas, DP, Elango, M, Janardhanraj, S, Srinandan, CS, Datey, A, Strugnell, RA, et al.. Successful treatment of biofilm infections using shock waves combined with antibiotic therapy. Sci Rep 2015;5:17440. https://doi.org/10.1038/srep17440.Search in Google Scholar PubMed PubMed Central
217. Karpov, VA, Kovalchuk, YL, Kharchenko, UV, Beleneva, IA. The effect of microfouling on marine corrosion of metals and destruction of protective coatings. Protect Met Phys Chem Surface 2012;48:803–9. https://doi.org/10.1134/s207020511207009x.Search in Google Scholar
218. Azam, F, Malfatti, F. Microbial structuring of marine ecosystems. Nat Rev Microbiol 2007;5:782–91. https://doi.org/10.1038/nrmicro1747.Search in Google Scholar PubMed
219. Dang, H, Li, T, Chen, M, Huang, G. Cross-Ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl Environ Microbiol 2008;74:52–60. https://doi.org/10.1128/aem.01400-07.Search in Google Scholar PubMed PubMed Central
220. Parasana, DK, Javia, BB, Barad, DB, Fefar, DT, Ghodasara, SN. Detection of biofilm forming Streptococcus species from bovine mastitis. Indian J Vet Sci Biotechnol 2023;19:106–8.Search in Google Scholar
221. Giaouris, E, Heir, E, Hébraud, M, Chorianopoulos, N, Langsrud, S, Møretrø, T, et al.. Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci 2014;97:298–309. https://doi.org/10.1016/j.meatsci.2013.05.023.Search in Google Scholar PubMed
222. Galié, S, García-Gutiérrez, C, Miguélez, EM, Villar, CJ, Lombó, F. Biofilms in the food industry: health aspects and control methods. Front Microbiol 2018;9. https://doi.org/10.3389/fmicb.2018.00898.Search in Google Scholar PubMed PubMed Central
223. Chitlapilly, DS, Wang, R. Biofilm through the looking glass: a microbial food safety perspective. Pathogens 2022;11:346. https://doi.org/10.3390/pathogens11030346.Search in Google Scholar PubMed PubMed Central
224. Fugaban, JII, Vazquez Bucheli, JE, Holzapfel, WH, Todorov, SD. Assessment of bacteriocin-antibiotic synergy for the inhibition and disruption of biofilms of Listeria monocytogenes and vancomycin-resistant Enterococcus. Microbiol Res 2022;13:480–99. https://doi.org/10.3390/microbiolres13030033.Search in Google Scholar
225. Olanbiwoninu, AA, Popoola, BM. Biofilms and their impact on the food industry. Saudi J Biol Sci 2023;30:103523. https://doi.org/10.1016/j.sjbs.2022.103523.Search in Google Scholar PubMed PubMed Central
226. Srey, S, Jahid, IK, Ha, S-D. Biofilm formation in food industries: a food safety concern. Food Control 2013;31:572–85. https://doi.org/10.1016/j.foodcont.2012.12.001.Search in Google Scholar
227. Iñiguez-Moreno, M, Gutiérrez-Lomelí, M, Avila-Novoa, MG. Kinetics of biofilm formation by pathogenic and spoilage microorganisms under conditions that mimic the poultry, meat, and egg processing industries. Int J Food Microbiol 2019;303:32–41. https://doi.org/10.1016/j.ijfoodmicro.2019.04.012.Search in Google Scholar PubMed
228. Dutra, TV, Fernandes, MS, Perdoncini, MRFG, Anjos, MMD, Abreu Filho, BAD. Capacity of Escherichia coli and Staphylococcus aureus to produce biofilm on stainless steel surfaces in the presence of food residues. J Food Process Preserv 2018;42:e13574. https://doi.org/10.1111/jfpp.13574.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston