Home Synthesis and crystal structure of the zinc borate Zn6B22O39·H2O
Article Open Access

Synthesis and crystal structure of the zinc borate Zn6B22O39·H2O

  • Raimund Ziegler and Hubert Huppertz EMAIL logo
Published/Copyright: November 16, 2023

Abstract

The synthesis and crystal structure of Zn6B22O39·H2O are described. This new zinc borate was synthesized at 7 GPa and 1523 K in a multianvil device. It crystallizes in the orthorhombic space group Pnma (no. 62) with the lattice parameters a = 818.77(4), b = 768.42(3), c = 1744.82(9) pm, V = 1.09777(9) nm3, and two formula units per unit cell (Z = 2). The structure is closely related to those of M 6B22O39·H2O (M = Fe, Co, Ni, Cd) and features non-planar (BO3) units as demonstrated by single-crystal and powder X-ray diffraction techniques.

1 Introduction

In the past, borates have been proven to be an important class of materials used for numerous applications [1, 2]. This is due to the fact, that borates exhibit a structural richness, exceeding even that of silicates [3, 4]. In recent years, we complemented this richness by using the multianvil high-pressure technique, enabling the formation of new structural motifs by introducing pressure as an additional parameter. With this method, we discovered Mo2B4O9 [5], connecting molybdenum cluster and borate chemistry, Dy4B6O15 [6], the first oxoborate containing edge-sharing (BO4) tetrahedra, HP-CsB5O8 [7] exhibiting the simultaneous linkage of nearly all structural units of borates, and the compounds M 6B22O39·H2O (M = Fe, Co, Ni) [8, 9], which show intermediate structural motifs towards the formation of edge-sharing (BO4) tetrahedra. Herein, we introduce a new zinc borate with the sum formula Zn6B22O39·H2O, which is closely related to the analogous compounds with the cations Fe, Co, Ni, and Cd.

2 Experimental section

2.1 Synthesis

Zn6B22O39·H2O was synthesized from ZnO (32.5 mg, 0.4 mmol, Merck, Darmstadt, Germany, >99 %) and partially hydrolysed B2O3 (69.5 mg, 1.0 mmol, Alfa Aesar, Haverhill, USA, 99 %) at 7 GPa and 1523 K in a Walker-type multianvil high-pressure setup (1000 t downforce press (mavo press LPR 1000-400/50), Walker-type module (Max Voggenreiter GmbH, Mainleus, Germany)). The reactants were mixed and ground in an agate mortar under air. The powder was filled into a platinum capsule (99.95 %, Ögussa, Vienna, Austria) and transferred into a hexagonal BN (hP4) (Henze Boron Nitride Products AG, Lauben, Germany) crucible. The crucible was closed with a lid of the same material and placed in an 18/11 assembly. More information about the high-pressure apparatus can be found in the literature [10], [11], [12]. The pressure was increased to 7 GPa within 180 min and kept constant during the heating programme. The temperature was then raised within 10 minutes to 1523 K. Subsequently, the temperature was maintained constant for 20 min and then cooled to 673 K within 300 min. Afterwards, the sample was quenched to room temperature, followed by a pressure release to ambient conditions within 800 min. The octahedron was cracked, and the colourless crystalline needles with a few black areas were recovered from the surrounding parts with a spike. The black spots appeared in many experiments and up to now we were not able to identify their composition. Syntheses with the right stoichiometric ratio resulted in β-ZnB4O7 (oC48) as product. However, with a ratio of Zn to B = 1:5 we often received Zn6B22O39·H2O as side or main phase.

2.2 X-ray powder diffraction

The colourless needles were separated by hand from the black spots, ground in an agate mortar, and fixed between two thin polyacetate foils with vacuum grease. Subsequently, the sample was put in a flat sample holder and measured at room temperature in transmission geometry on an STOE Stadi P diffractometer (STOE & Cie GmbH, Darmstadt, Germany) with a Mythen 2 DCS4 detector, using the WinXPOW software package [13]. Ge(111)-monochromatized MoK-L3 (λ = 0.7093 Å) radiation was applied to the sample in a 2θ range of 2–80° with a step size of 0.015° and 20 s exposure time. A Rietveld refinement was done with the Diffrac plus -Topas 4.2 software [14]. The single-crystal structure solution (below) was used as starting point and the peak shapes were fitted using modified Thompson-Cox-Hastings pseudo-Voigt profiles [15, 16]. The contribution of the diffractometer was adjusted by refining a LaB6 standard. The background was corrected with Chebychev polynomials to the 18th order. The graph was made with OriginPro [17].

2.3 Single-crystal X-ray diffraction

A single crystal was picked from the oil-coated sample using a polarization microscope and mounted on a loop (MircoMounts™, MiTeGen, LLC, Ithaca, NY, USA). The data were collected at 123 K on a Bruker D8 Quest diffractometer (Bruker, Billerica, USA) with an Incoatec microfocus MoK-L2,3 (λ = 0.71073 Å) X-ray source (Incoatec, Geesthacht, Germany) and a Photon III C14 detector system. The data collection routine, cell refinement, and data reduction were performed with the Apex3 programme package, as well as a multi-scan absorption correction based on spherical harmonics [18]. The structure was solved with ShelXT [19] using Intrinsic Phasing and refined with the ShelXL refinement package using least-squares minimisation. The programme Olex2 [20] was used as graphical interface and illustrations were made with the program Diamond [21]. The centrosymmetric space group Pnma was verified with the ADDSYM [22] routine of the Platon [23] programme package. Due to the split position of B6/B7, the boron atoms B6 and B7 were refined isotropically. Apart from that, all non-hydrogen atoms were refined anisotropically. The positions of the hydrogen atoms could not be detected and will be discussed in the chapter 3.1 (Crystal structure). The crystal data, data collection, and structure refinement results are shown in Table 1. The fractional atomic coordinates, Wyckoff positions, and displacement parameters are listed in Tables 2 and 3.

Table 1:

Crystal data, data collection, and structure refinement results for Zn6B22O39·H2O.

Zn6B22O39·H2O
Molar mass / g mol−1 1270.04
Crystal system Orthorhombic
Space group Pnma
Cell formula units 2

Powder diffractometer STOE Stadi P
Radiation; wavelength λ / pm MoK-L3; 70.93
Powder data:
a / pm 819.44(2)
b / pm 768.94(2)
c / pm 1745.92(4)
V / nm3 1.10011(4)

Single-crystal diffractometer Bruker D8 Quest
Radiation; wavelength λ / pm MoK-L2,3; 71.073
Single-crystal data:
a / pm 818.77(4)
b / pm 768.42(3)
c / pm 1744.82(9)
V / nm3 1.09777(9)

Calculated density / g cm−3 3.84
Crystal size / mm3 0.06 × 0.04 × 0.02
Temperature / K 123
Absorption coefficient / mm−1 6.7
F(000) / e 1220
Detector distance / mm 40
2θ range / deg 4.67–74.96
Range in hkl −14 ≤ h ≤ 14, −9 ≤ k ≤ 13, −29 ≤ l ≤ 29
Total no. reflections 47267
Data; ref. Parameters 3040; 178
Reflections with I > 2σ(I) 2863
R int; R σ 0.0507; 0.0190
Goodness-of-fit on F 2 1.158
Absorption correction Multi-scan
R1; wR2 for I > 2 σ(I) 0.0318; 0.0910
R1; wR2 for all data 0.0337; 0.0919
Transmission max.; min. 0.8260; 0.6962
Largest diff. Peak; hole / e Å−3 1.63; −1.95
Table 2:

Fractional atomic coordinates (×104), Wyckoff positions, equivalent isotropic displacement parameters (Å2 × 103), and site occupancy factors (S.O.F.) in Zn6B22O39·H2O. U eq is defined as one third of the trace of the orthogonalized U ij tensor.

Atom Wyck. Site x/a y/b z/c U eq S.O.F.
Zn1 4c 5827.3(5) 7500 4589.3(2) 7.87(7) 1
Zn2 4c 7014.5(4) 7500 9012.8(2) 6.66(7) 1
Zn3 4c 5104.9(4) 2500 8335.9(2) 7.30(7) 1
B1 8d 5953(2) 5832(3) 7601(2) 2.9(3) 1
B2 8d 3456(2) 4173(3) 7010(2) 3.0(3) 1
B3 8d 8304(2) 5875(3) 6637(2) 3.4(3) 1
B4 8d 5338(2) 5825(3) 6121(2) 3.5(3) 1
B5 8d 7549(3) 4189(3) 5465(2) 5.3(3) 1
B6 8d 5310(30) 920(30) 9808(17) 11(3) 0.23(5)
B7 8d 5120(19) 745(18) 9678(11) 6(3) 0.27(5)
O1 8d 6696(2) 4454(2) 8034.1(8) 2.9(2) 1
O2 8d 9141(2) 5544(2) 7413.1(7) 2.4(2) 1
O3 8d 6512(2) 5781(2) 6799.9(7) 3.1(2) 1
O4 8d 6337(2) 5572(2) 5441.6(7) 3.2(2) 1
O5 8d 8692(2) 4424(2) 6127.2(8) 5.3(2) 1
O6 4c 6389(2) 7500 7935(2) 2.6(3) 1
O7 4c 3863(2) 2500 7334(2) 2.7(3) 1
O8 8d 4166(2) 4446(2) 6253.5(7) 3.0(2) 1
O9 4c 8753(2) 7500 6314(2) 2.5(3) 1
O10 4c 4488(2) 7500 6093(2) 2.7(3) 1
O11 4c 6743(3) 2500 5452(2) 6.5(3) 1
O12 8d 8701(2) 4307(2) 4789.7(9) 8.9(2) 1
O13 4c 5925(7) 2500 9553(3) 10.4(8) 0.5
O14 4c 6556(7) 2500 9412(3) 10.6(8) 0.5
Table 3:

Anisotropic displacement parameters (Å2 × 103) in Zn6B22O39·H2O. The anisotropic displacement factor exponent takes the form: –2π 2(U 11 h 2 a*2 + U 22 k 2 b*2 + U 33 l 2 c*2 + 2 U 12 hka*b* + 2 U 13 hla*c* + 2 U 23 klb*c*).

Atom U 11 U 22 U 33 U 23 U 13 U 12
Zn1 11.3(2) 6.1(2) 6.2(2) 0 0.7(2) 0
Zn2 5.2(2) 11.2(2) 3.6(2) 0 0.95(9) 0
Zn3 5.8(2) 5.8(2) 10.3(2) 0 −1.8(2) 0
B1 2.8(6) 3.2(6) 2.7(6) 0.1(5) −0.2(5) 0.1(5)
B2 2.5(6) 3.0(6) 3.5(6) −0.1(5) −0.4(5) 0.2(5)
B3 3.4(7) 4.1(7) 2.8(6) −0.3(5) 0.5(5) 0.4(5)
B4 2.7(6) 4.1(7) 3.6(6) 0.2(5) 0.0(5) 0.2(5)
B5 6.3(7) 5.5(7) 4.2(7) −0.1(6) 1.1(6) 1.8(6)
O1 2.0(5) 2.9(5) 3.8(5) 1.3(4) 0.0(4) 0.5(4)
O2 1.5(5) 3.2(4) 2.6(4) 1.0(4) −0.6(3) −0.6(4)
O3 2.1(4) 5.3(5) 1.9(4) 0.4(4) −0.6(4) −0.5(4)
O4 3.8(5) 3.5(5) 2.2(4) 0.2(4) 0.7(4) 0.8(4)
O5 6.6(5) 3.0(5) 6.2(5) −2.4(4) −3.7(4) 1.5(4)
O6 2.5(6) 1.7(6) 3.7(7) 0 −1.3(5) 0
O7 3.9(7) 2.0(6) 2.2(6) 0 −0.6(5) 0
O8 3.5(5) 3.4(5) 1.9(4) −0.5(4) 0.6(4) −1.4(4)
O9 3.2(7) 1.4(6) 2.7(6) 0 0.0(5) 0
O10 2.0(6) 2.2(6) 3.8(6) 0 0.0(5) 0
O11 6.6(7) 2.5(7) 10.3(8) 0 −5.0(6) 0
O12 6.4(5) 13.9(6) 6.5(5) −3.0(5) 2.2(4) 0.0(5)
O13 12(2) 14(2) 5(2) 0 −2(2) 0
O14 9(2) 9(2) 14(2) 0 −3(2) 0

CSD 2301615 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/structures.

3 Results and discussion

3.1 Crystal structure

Zn6B22O39·H2O crystallizes in the space group Pnma (no. 62) with the lattice parameters a = 818.77(4), b = 768.42(3), c = 1744.82(9) pm, V = 1.09777(9) nm3, and two formula units per cell (Z = 2). Its structure contains (BO3), (BO4), (ZnO4), and (ZnO6) units and is closely related to the structures of M 6B22O39·H2O (M = Fe, Co, Ni, Cd) [8, 9, 24]. In the M 6B22O39·H2O structures, the borate network is formed by corner-connected (BO4) tetrahedra, forming corrugated layers (Figure 1).

Figure 1: 
Corrugated layers in Zn6B22O39·H2O (top) and the Fundamental Building Block (FBB) (bottom, centre). The planar (B6O3) and non-planar (B7O3) units are shown (bottom, left and bottom, right).
Figure 1:

Corrugated layers in Zn6B22O39·H2O (top) and the Fundamental Building Block (FBB) (bottom, centre). The planar (B6O3) and non-planar (B7O3) units are shown (bottom, left and bottom, right).

These layers are corner-connected by planar or non-planar (BO3) units. In case of Fe, Co, and Ni, they are connected by non-planar (BO3) units, which show intermediate states between (BO3) triangles and (BO4) tetrahedra. The cadmium compound exhibits exclusively planar (BO3) units and the new zinc borate features a mixture of both, planar (B6O3) and non-planar (B7O3) units. The B7 atom is displaced out of the O3-triangle plane, while the B6 atom is not. This is evident from the distances B6–O5 (212(3) pm) and B7–O5 (183(2) pm) (Table 4). In the Fe, Co, and Ni compounds, these B–O distances are 188.3, 169.5, and 172.1 pm. B6 and B7 are present with site occupancy factors of 27 and 23 %, respectively. Furthermore, B6 and B7 form diborate units with O13, being separated by a water molecule (O14). This kind of disorder has two possibilities in the structure, which are shown in Figure 2 (atom B7 is not shown for clarity).

Table 4:

Selected distances in Zn6B22O39·H2O.

Atoms Length / pm Atoms Length / pm
Zn1–O41 214.0(2) Zn3–O58 209.8(2)
Zn1–O4 214.0(2) Zn3–O59 209.8(2)
Zn1–O112 210.6(2) Zn3–O7 202.2(2)
Zn1–O83 209.7(2) Zn3–O1 205.6(2)
Zn1–O82 209.7(2) Zn3–O110 205.6(2)
Zn1–O144 216.5(6) Zn3–O13 222.8(5)
Zn1–O13 266.0(6) Zn3–O14 222.2(5)
av.1 Zn1–O 212.4 av. Zn3–O 209.3
av.2 Zn1–O 220.7
B3–O5 146.1(2)
Zn2–O125 202.7(2) B3–O3 149.6(2)
Zn2–O126 202.7(2) B3–O2 154.0(2)
Zn2–O107 203.4(2) B3–O9 141.8(2)
Zn2–O6 194.9(2) av. B3–O 147.9
av. Zn2–O 200.9
B4–O3 152.7(2)
B1–O38 147.1(2) B4–O4 145.3(2)
B1–O28 150.0(2) B4–O10 146.4(2)
B1–O6 145.3(2) B4–O8 144.8(2)
B1–O1 143.6(2) av. B4–O 147.3
av. B1–O 146.5
B5–O5 149.8(3)
B2–O28 156.1(2) B5–O4 145.4(2)
B2–O8 145.7(2) B5–O12 151.2(3)
B2–O7 144.4(2) B5–O11 145.6(2)
B2–O18 145.9(2) av. B5–O 148.0
av. B2–O 148.0
B711–B5 212(2)
B6–O5 212(3) B7–O59 183(2)
B6–O129 151(2) B7–O1212 148(2)
B6–O1212 148(2) B7–O129 148.9(9)
B6–O13 139(2) B7–O13 152(2)
av. (B6–O3) 146.0 av. (B7–O3) 149.6
av. (B6–O4) 162.5 av. (B7–O4) 158.0
  1. 1 +x, 3/2–y, +z. 2 1–x, 1–y, 1–z. 3 1–x, ½+y, 1–z. 4 3/2–x, 1–y, –½+z. 5 3/2–x, ½+y, ½+z. 6 3/2–x, 1–y, ½+z. 7 ½+x, +y, 3/2–z. 8 –½+x, +y, 3/2–z. 9 –½+x, ½–y, 3/2–z. 10 +x, ½–y, +z. 11 ½+x, ½–y, 3/2–z. 12 3/2–x, –½+y, ½+z

Figure 2: 
Two possibilities for the disorder of the (B6O3) units (forming ((B6)2O5) diborate units) and O13/O14 oxygen atoms. Atom B7 is not shown for clarity.
Figure 2:

Two possibilities for the disorder of the (B6O3) units (forming ((B6)2O5) diborate units) and O13/O14 oxygen atoms. Atom B7 is not shown for clarity.

The hydrogen atoms must be bonded to the oxygen atom O14, otherwise O14 would only be coordinating to Zn1 and Zn3 (Figure 3). The hydrogen atoms were also described at that location in the structures of the compounds M 6B22O39·H2O (M = Fe, Co, Ni, Cd). However, we were not able to locate the hydrogen atom via single-crystal structure analysis in the structure presented here. The hydrogen atom environment and possible hydrogen bonds to O12 are proposed as red dashed lines in Figure 3.

Figure 3: 
Hydrogen environment and possible hydrogen bonds (red dashed lines). Atom B7 is not shown for clarity.
Figure 3:

Hydrogen environment and possible hydrogen bonds (red dashed lines). Atom B7 is not shown for clarity.

The Zn–O distances in Zn6B22O39·H2O (Figure 4 and Table 4) fit those reported by Gagné and Hawthorne (coordination number (CN) 4: 184.7–207.6 pm, av. 195.2 pm; CN 6: 188.6–269.6 pm, av. 211.0 pm) [25]. Even the longest Zn–O distance of 266.0 pm (Zn1–O13) in Zn6B22O39·H2O fits the reported range.

Figure 4: 
Coordination spheres of Zn1 (top, left), Zn2 (top, right), Zn3 (bottom, left), and O14 (bottom right) in Zn6B22O39·H2O. Distances are given in pm.
Figure 4:

Coordination spheres of Zn1 (top, left), Zn2 (top, right), Zn3 (bottom, left), and O14 (bottom right) in Zn6B22O39·H2O. Distances are given in pm.

The B–O distances and O–B–O angles (Table 5) for B1, B2, B3, B4, and B5 fit the values for (BO4) tetrahedra reported by Zobetz (B–O distances from 137.3 to 169.9 pm, av. 147.6 pm, O–B–O angles vary between 95.7 and 119.4°, av. 109.4°) [26].

Table 5:

Selected angles in Zn6B22O39·H2O.

Atoms Angle / deg Atoms Angle / deg
O4–Zn1–O41 87.60(7) O6–Zn2–O105 100.04(8)
O4–Zn1–O142 84.6(2) O6–Zn2–O126 124.71(6)
O41–Zn1–O142 84.6(2) O6–Zn2–O127 124.71(6)
O83–Zn1–O4 89.62(5) O126–Zn2–O105 110.38(6)
O84–Zn1–O4 168.58(6) O127–Zn2–O105 110.38(6)
O84–Zn1–O41 89.62(5) O126–Zn2–O127 86.5(2)
O83–Zn1–O41 168.58(6)
O83–Zn1–O84 90.95(7) O1–Zn3–O18 93.79(8)
O84–Zn1–O113 88.76(6) O1–Zn3–O59 87.10(5)
O83–Zn1–O113 88.76(6) O1–Zn3–O510 168.01(6)
O83–Zn1–O142 84.1(2) O18–Zn3–O59 168.01(6)
O84–Zn1–O142 84.1(2) O18–Zn3–O510 87.10(5)
O113–Zn1–O41 102.65(6) O18–Zn3–O13 93.1(2)
O113–Zn1–O4 102.65(6) O1–Zn3–O13 93.1(2)
O113–Zn1–O142 169.8(2) O1–Zn3–O14 83.0(2)
O18–Zn3–O14 83.0(2)
O1–B1–O29 108.6(2) O510–Zn3–O59 89.58(8)
O1–B1–O3 110.4(2) O510–Zn3–O13 75.0(2)
O1–B1–O6 109.6(2) O59–Zn3–O13 75.0(2)
O3–B1–O29 106.8(2) O59–Zn3–O14 85.3(2)
O6–B1–O29 112.3(2) O510–Zn3–O14 85.3(2)
O6–B1–O3 109.2(2) O7–Zn3–O1 95.58(5)
av. O–B1–O 109.5 O7–Zn3–O18 95.58(5)
O7–Zn3–O59 96.23(6)
O19–B2–O29 106.8(2) O7–Zn3–O510 96.23(6)
O7–B2–O19 112.3(2) O7–Zn3–O13 167.4(2)
O7–B2–O29 105.4(2) O7–Zn3–O14 177.9(2)
O7–B2–O8 113.0(2)
O8–B2–O19 109.0(2) O4–B5–O5 111.1(2)
O8–B2–O29 110.1(2) O4–B5–O11 110.0(2)
av. O–B2–O 109.4 O4–B5–O12 111.1(2)
O5–B5–O12 101.8(2)
O3–B3–O2 105.2(2) O11–B5–O5 113.7(2)
O5–B3–O2 108.2(2) O11–B5–O12 108.9(2)
O5–B3–O3 107.0(2) av. O–B5–O 109.4
O9–B3–O2 112.3(2)
O9–B3–O3 111.9(2) O1211–B6–O1210 113(2)
O9–B3–O5 112.0(2) O1210–B6–O13 122(2)
av. O–B3–O 109.4 O1211–B6–O13 125(2)
O12–B6–O5 78(2)
O4–B4–O3 106.0(2) O12–B6–O5 103(2)
O4–B4–O10 111.0(2) O13–B6–O5 95(2)
O8–B4–O3 106.1(2)
O8–B4–O4 114.0(2) O1211–B7–O510 118(2)
O8–B4–O10 109.5(2) O1210–B7–O510 88.7(9)
O10–B4–O3 110.2(2) O1211–B7–O1210 114.0(6)
av. O–B4–O 109.5 O1211–B7–O13 114(2)
O1210–B7–O13 117(2)
O5–B7–O13 103.3(9)
  1. 1 +x, 3/2–y, +z. 2 3/2–x, 1–y, –½+z. 3 1–x, 1–y, 1–z. 4 1–x, ½+y, 1–z. 5 ½+x, +y, 3/2–z. 6 3/2–x, ½+y, ½+z. 7 3/2–x, 1–y, ½+z. 8 +x, ½–y, +z. 9 –½+x, +y, 3/2–z. 10 –½+x, ½–y, 3/2–z. 11 3/2–x, –½+y, ½+z.

The B6–O and B7–O distances are longer than expected for (BO3) units. They are on average 146.0 and 149.6 pm for trigonal planar (B6O3) and trigonal non-planar (B7O3), respectively. These averages are closer to the average of (BO4) tetrahedra (147.6 pm) [26] than to trigonal planar (BO3) units (137.0 pm) [27]. This supports the thesis of a transition state to edge-sharing (BO4) tetrahedra. A similar arrangement exists in the structures of M 6B22O39·H2O (M = Fe, Co, Ni) [8, 9].

3.2 Rietveld analysis

The Rietveld refinement of Zn6B22O39·H2O is depicted in Figure 5. The main phase is Zn6B22O39·H2O with 74(4)% and (NH4)B3O5 formed as side phase with 26(4)%. The unit cell parameters found in the Rietveld refinement fit well to those obtained by single-crystal X-ray diffraction (Table 1). The high background at low 2θ values is a result of a small sample size due to mechanical separation of the black side product from the colourless needles. The reflections marked with an asterisk originate from an unknown side phase.

Figure 5: 
X-ray powder diffraction pattern (MoK-L3 radiation, λ = 70.93 pm) and Rietveld refinement of Zn6B22O39·H2O. The positions of the reflections of Zn6B22O39·H2O (R
Bragg = 0.86 %) are shown in green, those of NH4B3O5 (R
Bragg = 0.87 %) in blue. (R
exp = 2.02 %, R
wp = 2.27 %, R
p = 1.70 %, GooF = 1.12).
Figure 5:

X-ray powder diffraction pattern (MoK-L3 radiation, λ = 70.93 pm) and Rietveld refinement of Zn6B22O39·H2O. The positions of the reflections of Zn6B22O39·H2O (R Bragg = 0.86 %) are shown in green, those of NH4B3O5 (R Bragg = 0.87 %) in blue. (R exp = 2.02 %, R wp = 2.27 %, R p = 1.70 %, GooF = 1.12).

4 Summary

Herein we have described the synthesis and crystal structure of the new zinc borate Zn6B22O39·H2O. Its structure is closely related to the structures of M 6B22O39·H2O (M = Fe, Co, Ni, Cd). The zinc borate exhibits planar and non-planar (BO3) units. The non-planar (BO3) units can be seen as intermediate states towards edge-sharing (BO4) units. A Rietveld refinement showed only NH4B3O5 as side phase.


Corresponding author: Hubert Huppertz, Department of General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria, E-mail:

Acknowledgments

Special thanks go to Dr. K. Wurst for the collection of the single-crystal data.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflict of interest regarding this article.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Huppertz, H., Ziegler, R. Borate applications. In From Energy Storage to Photofunctional Materials; Pöttgen, R., Jüstel, T., Strassert, C. A., Eds.; De Gruyter: Berlin, Boston, Vol. 2, 2023; pp. 153–165.10.1515/9783110798890-011Search in Google Scholar

2. Mutailipu, M., Poeppelmeier, K. R., Pan, S. Chem. Rev. 2021, 121, 1130–1202; https://doi.org/10.1021/acs.chemrev.0c00796.Search in Google Scholar PubMed

3. Liebau, F. Structural Chemistry of Silicates; Springer: Berlin, Heidelberg, 1985.10.1007/978-3-642-50076-3Search in Google Scholar

4. Huppertz, H., Keszler, D. A. Borates: solid-state chemistry. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Crabtree, R. H., Ed.; John Wiley & Sons, Inc.: Hoboken, 2014; pp. 1–12.10.1002/9781119951438.eibc0021.pub2Search in Google Scholar

5. Schmitt, M. K., Janka, O., Pöttgen, R., Benndorf, C., de Oliveira, M.Jr., Eckert, H., Pielnhofer, F., Tragl, A.-S., Weihrich, R., Joachim, B., Johrendt, D., Huppertz, H. Angew. Chem. Int. Ed. 2017, 56, 6449–6453; https://doi.org/10.1002/anie.201701891.Search in Google Scholar PubMed

6. Huppertz, H., von der Eltz, B. J. Am. Chem. Soc. 2002, 124, 9376–9377; https://doi.org/10.1021/ja017691z.Search in Google Scholar PubMed

7. Sohr, G., Többens, D. M., Schmedt auf der Günne, J., Huppertz, H. Chem. Eur. J. 2014, 20, 17059–17067; https://doi.org/10.1002/chem.201404018.Search in Google Scholar PubMed

8. Neumair, S. C., Knyrim, J. S., Oeckler, O., Glaum, R., Kaindl, R., Stalder, R., Huppertz, H. Chem. Eur. J. 2010, 16, 13659–13670; https://doi.org/10.1002/chem.201001611.Search in Google Scholar PubMed

9. Schmitt, M. K., Huppertz, H. Z. Naturforsch. 2017, 72b, 967–975.10.1515/znb-2017-0148Search in Google Scholar

10. Huppertz, H. Z. Kristallogr. 2004, 219, 330–338; https://doi.org/10.1524/zkri.219.6.330.34633.Search in Google Scholar

11. Walker, D., Carpenter, M. A., Hitch, C. M. Am. Mineral. 1990, 75, 1020–1028.Search in Google Scholar

12. Walker, D. Am. Mineral. 1991, 76, 1092–1100.10.1007/978-1-4615-3968-1_10Search in Google Scholar

13. WinXPOW (Version 3.3); STOE & Cie GmbH: Darmstadt (Germany), 2015.Search in Google Scholar

14. Topas (version 4.2). General Profile and Structure Analysis Software for Powder diffraction data; Bruker AXS GmbH: Karlsruhe (Germany), 2009.Search in Google Scholar

15. Thompson, P., Cox, D. E., Hastings, J. B. J. Appl. Crystallogr. 1987, 20, 79–83; https://doi.org/10.1107/s0021889887087090.Search in Google Scholar

16. Young, R. A., Desai, P. Arch. Nauki Mater. 1989, 10, 71–90.10.1524/klio.1989.71.71.90Search in Google Scholar

17. OriginPro (Version 2021b); OriginLab Corp.: Northampton, Massachusetts (USA), 2021.Search in Google Scholar

18. Apex3 (version 2017.3-0), Cell_Now (Version 2008/4), Saint (Version 8.40B), Twinabs (Version 2012/1), and Sadabs (Version 2016/2); Bruker AXS GmbH: Karlsruhe (Germany).Search in Google Scholar

19. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

20. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

21. Brandenburg, K. Diamond, (Version 4.6.8), Crystal and Molecular Structure Visualization, Crystal Impact – K; Brandenburg & H. Putz GbR: Bonn (Germany), 2022.Search in Google Scholar

22. Le Page, Y. J. Appl. Crystallogr. 1988, 21, 983–984; https://doi.org/10.1107/s0021889888007022.Search in Google Scholar

23. Spek, A. Acta Crystallogr. D 2009, 65, 148–155; https://doi.org/10.1107/s090744490804362x.Search in Google Scholar

24. Sohr, G., Ciaghi, N., Wurst, K., Huppertz, H. Z. Naturforsch. 2015, 70b, 183–190.10.1515/znb-2014-0243Search in Google Scholar

25. Gagne, O. C., Hawthorne, F. C. IUCrJ 2020, 7, 581–629; https://doi.org/10.1107/s2052252520005928.Search in Google Scholar

26. Zobetz, E. Z. Kristallogr. 1990, 191, 45–57; https://doi.org/10.1524/zkri.1990.191.1-2.45.Search in Google Scholar

27. Zobetz, E. Z. Kristallogr. 1982, 160, 81–92; https://doi.org/10.1524/zkri.1982.160.1-2.81.Search in Google Scholar

Received: 2023-10-20
Accepted: 2023-10-31
Published Online: 2023-11-16
Published in Print: 2023-11-27

© 2023 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0089/html?lang=en
Scroll to top button