Home Heat capacity of sodium and potassium hexafluorophosphate
Article
Licensed
Unlicensed Requires Authentication

Heat capacity of sodium and potassium hexafluorophosphate

  • Konrad Burkmann , Bastian Hansel , Franziska Habermann , Bianca Störr , Martin Bertau and Florian Mertens EMAIL logo
Published/Copyright: October 30, 2023

Abstract

The heat capacities of NaPF6 and KPF6 were measured in a broad temperature range using differential scanning calorimetry. The suitability of applying a modified Neumann Kopp rule to calculate the heat capacity of “PF6” was evaluated in order to obtain a general method to predict the heat capacities of other hexafluorophosphates.


Corresponding author: Florian Mertens, Institut für Physikalische Chemie, TU Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany, E-mail:

Funding source: German Federal Ministry of Education and Research

Award Identifier / Grant number: 03XP0332B

Acknowledgments

The authors would also like to thank Dr. Lesia Sandig-Predzymirska for translating Russian-language publications and Prof. Dr. Klaus Bohmhammel as well as Dr. Jürgen Seidel for fruitful discussions especially concerning experimental challenges.

  1. Research ethics: We do not see any ethical hurdle because we did not work on an ethically critical issue.

  2. Author contributions: The authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors state no conflicts of interest.

  4. Research funding: The reported research activities have been financially supported by the German Federal Ministry of Education and Research (Grant no. 03XP0332B) and the Free State of Saxony (K. Burkmann, Landesstipendium zur Graduiertenförderung).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Terborg, L., Nowak, S., Passerini, S., Winter, M., Karst, U., Haddad, P. R., Nesterenko, P. N. Anal. Chim. Acta 2012, 714, 121–126; https://doi.org/10.1016/j.aca.2011.11.056.Search in Google Scholar PubMed

2. Kawamura, T., Okada, S., Yamaki, J. J. Power Sources 2006, 156, 547–554; https://doi.org/10.1016/j.jpowsour.2005.05.084.Search in Google Scholar

3. Kraft, V., Weber, W., Grützke, M., Winter, M., Nowak, S. RSC Adv. 2015, 5, 80150–80157; https://doi.org/10.1039/c5ra16679a.Search in Google Scholar

4. Stich, M., Göttlinger, M., Kurniawan, M., Schmidt, U., Bund, A. J. Phys. Chem. C 2018, 122, 8836–8842; https://doi.org/10.1021/acs.jpcc.8b02080.Search in Google Scholar

5. Yang, H., Zhuang, G. V., Ross, P. N. J. Power Sources 2006, 161, 573–579; https://doi.org/10.1016/j.jpowsour.2006.03.058.Search in Google Scholar

6. European Commission. Study on the Critical Raw Materials for the EU 2023. Final Report; Publications Office of the European Union: Luxembourg, 2023.Search in Google Scholar

7. Gavritchev, K. S., Sharpataya, G. A., Smagin, A. A., Malyi, E. N., Matyukha, V. A. J. Therm. Anal. Calorim. 2003, 73, 71–83; https://doi.org/10.1023/a:1025125306291.10.1023/A:1025125306291Search in Google Scholar

8. Gavrichev, K. S., Sharpataya, G. A., Golushina, L. N., Plakhotnik, V. N., Goncharova, I. V. Russ. J. Inorg. Chem. 2002, 47, 940–944.Search in Google Scholar

9. Ehlert, T. C., Hsia, M.-M. J. Chem. Eng. Data 1972, 17, 18–21; https://doi.org/10.1021/je60052a031.Search in Google Scholar

10. Staveley, L. A. K., Grey, N. R., Layzell, M. J. Z. Naturforsch. 1963, 18a, 148–154; https://doi.org/10.1515/zna-1963-0207.Search in Google Scholar

11. Habermann, F., Wirth, A., Burkmann, K., Störr, B., Seidel, J., Gumeniuk, R., Bohmhammel, K., Mertens, F. to be published.Search in Google Scholar

12. Thomas, D., Abdel-Hafiez, M., Gruber, T., Hüttl, R., Seidel, J., Wolter, A. U., Büchner, B., Kortus, J., Mertens, F. J. Chem. Thermodyn. 2013, 64, 205–225; https://doi.org/10.1016/j.jct.2013.05.018.Search in Google Scholar

13. Thomas, D., Zeilinger, M., Gruner, D., Hüttl, R., Seidel, J., Wolter, A. U., Fässler, T. F., Mertens, F. J. Chem. Thermodyn. 2015, 85, 178–190; https://doi.org/10.1016/j.jct.2015.01.004.Search in Google Scholar

14. Taubert, F., Schwalbe, S., Seidel, J., Hüttl, R., Gruber, T., Janot, R., Bobnar, M., Gumeniuk, R., Mertens, F., Kortus, J. Int. J. Mater. Res. 2017, 108, 942–958; https://doi.org/10.3139/146.111550.Search in Google Scholar

15. Taubert, F., Seidel, J., Hüttl, R., Bobnar, M., Gumeniuk, R., Mertens, F. J. Chem. Thermodyn. 2018, 116, 323–329; https://doi.org/10.1016/j.jct.2017.09.033.Search in Google Scholar

16. Taubert, F., Seidel, J., Hüttl, R., Bobnar, M., Gumeniuk, R., Mertens, F. J. Chem. Thermodyn. 2019, 130, 119–128; https://doi.org/10.1016/j.jct.2018.09.035.Search in Google Scholar

17. Loos, S., Gruner, D., Abdel-Hafiez, M., Seidel, J., Hüttl, R., Wolter, A. U., Bohmhammel, K., Mertens, F. J. Chem. Thermodyn. 2015, 85, 77–85; https://doi.org/10.1016/j.jct.2015.01.007.Search in Google Scholar

18. Della Gatta, G., Richardson, M. J., Sarge, S. M., Stølen, S. Pure Appl. Chem. 2006, 78, 1455–1476; https://doi.org/10.1351/pac200678071455.Search in Google Scholar

19. Kitashita, K., Hagiwara, R., Ito, Y., Tamada, O. J. Fluorine Chem. 2000, 101, 173–179; https://doi.org/10.1016/s0022-1139(99)00155-4.Search in Google Scholar

20. Bode, H., Teufer, G. Z. Anorg. Allg. Chem. 1952, 268, 20–24; https://doi.org/10.1002/zaac.19522680104.Search in Google Scholar

21. Zagorac, D., Müller, H., Ruehl, S., Zagorac, J., Rehme, S. J. Appl. Crystallogr. 2019, 52, 918–925; https://doi.org/10.1107/s160057671900997x.Search in Google Scholar

22. Maier, C. G., Kelley, K. K. J. Am. Chem. Soc. 1932, 54, 3243–3246; https://doi.org/10.1021/ja01347a029.Search in Google Scholar

23. Pinatel, E. R., Albanese, E., Civalleri, B., Baricco, M. J. Alloys Compd. 2015, 645, S64−S68; https://doi.org/10.1016/j.jallcom.2015.01.199.Search in Google Scholar

24. Dematteis, E. M., Jensen, S. R., Jensen, T. R., Baricco, M. J. Chem. Thermodyn. 2020, 143, 106055–106064; https://doi.org/10.1016/j.jct.2020.106055.Search in Google Scholar

25. Röhr, C., Kniep, R. Z. Naturforsch. 1994, 49b, 650–654; https://doi.org/10.1515/znb-1994-0514.Search in Google Scholar

26. Riedel, E., Janiak, C. Anorganische Chemie, Vol. 9; De Gruyter: Berlin, Boston, 2015.10.1515/9783110355284Search in Google Scholar

27. Roine, A. HSC Chemistry; Outokumpu Research Oy: Pori, Finland, 2002.Search in Google Scholar

Received: 2023-09-18
Accepted: 2023-10-12
Published Online: 2023-10-30
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0084/html
Scroll to top button