Abstract
The heat capacities of NaPF6 and KPF6 were measured in a broad temperature range using differential scanning calorimetry. The suitability of applying a modified Neumann Kopp rule to calculate the heat capacity of “PF6” was evaluated in order to obtain a general method to predict the heat capacities of other hexafluorophosphates.
Funding source: German Federal Ministry of Education and Research
Award Identifier / Grant number: 03XP0332B
Acknowledgments
The authors would also like to thank Dr. Lesia Sandig-Predzymirska for translating Russian-language publications and Prof. Dr. Klaus Bohmhammel as well as Dr. Jürgen Seidel for fruitful discussions especially concerning experimental challenges.
-
Research ethics: We do not see any ethical hurdle because we did not work on an ethically critical issue.
-
Author contributions: The authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Competing interests: The authors state no conflicts of interest.
-
Research funding: The reported research activities have been financially supported by the German Federal Ministry of Education and Research (Grant no. 03XP0332B) and the Free State of Saxony (K. Burkmann, Landesstipendium zur Graduiertenförderung).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Terborg, L., Nowak, S., Passerini, S., Winter, M., Karst, U., Haddad, P. R., Nesterenko, P. N. Anal. Chim. Acta 2012, 714, 121–126; https://doi.org/10.1016/j.aca.2011.11.056.Search in Google Scholar PubMed
2. Kawamura, T., Okada, S., Yamaki, J. J. Power Sources 2006, 156, 547–554; https://doi.org/10.1016/j.jpowsour.2005.05.084.Search in Google Scholar
3. Kraft, V., Weber, W., Grützke, M., Winter, M., Nowak, S. RSC Adv. 2015, 5, 80150–80157; https://doi.org/10.1039/c5ra16679a.Search in Google Scholar
4. Stich, M., Göttlinger, M., Kurniawan, M., Schmidt, U., Bund, A. J. Phys. Chem. C 2018, 122, 8836–8842; https://doi.org/10.1021/acs.jpcc.8b02080.Search in Google Scholar
5. Yang, H., Zhuang, G. V., Ross, P. N. J. Power Sources 2006, 161, 573–579; https://doi.org/10.1016/j.jpowsour.2006.03.058.Search in Google Scholar
6. European Commission. Study on the Critical Raw Materials for the EU 2023. Final Report; Publications Office of the European Union: Luxembourg, 2023.Search in Google Scholar
7. Gavritchev, K. S., Sharpataya, G. A., Smagin, A. A., Malyi, E. N., Matyukha, V. A. J. Therm. Anal. Calorim. 2003, 73, 71–83; https://doi.org/10.1023/a:1025125306291.10.1023/A:1025125306291Search in Google Scholar
8. Gavrichev, K. S., Sharpataya, G. A., Golushina, L. N., Plakhotnik, V. N., Goncharova, I. V. Russ. J. Inorg. Chem. 2002, 47, 940–944.Search in Google Scholar
9. Ehlert, T. C., Hsia, M.-M. J. Chem. Eng. Data 1972, 17, 18–21; https://doi.org/10.1021/je60052a031.Search in Google Scholar
10. Staveley, L. A. K., Grey, N. R., Layzell, M. J. Z. Naturforsch. 1963, 18a, 148–154; https://doi.org/10.1515/zna-1963-0207.Search in Google Scholar
11. Habermann, F., Wirth, A., Burkmann, K., Störr, B., Seidel, J., Gumeniuk, R., Bohmhammel, K., Mertens, F. to be published.Search in Google Scholar
12. Thomas, D., Abdel-Hafiez, M., Gruber, T., Hüttl, R., Seidel, J., Wolter, A. U., Büchner, B., Kortus, J., Mertens, F. J. Chem. Thermodyn. 2013, 64, 205–225; https://doi.org/10.1016/j.jct.2013.05.018.Search in Google Scholar
13. Thomas, D., Zeilinger, M., Gruner, D., Hüttl, R., Seidel, J., Wolter, A. U., Fässler, T. F., Mertens, F. J. Chem. Thermodyn. 2015, 85, 178–190; https://doi.org/10.1016/j.jct.2015.01.004.Search in Google Scholar
14. Taubert, F., Schwalbe, S., Seidel, J., Hüttl, R., Gruber, T., Janot, R., Bobnar, M., Gumeniuk, R., Mertens, F., Kortus, J. Int. J. Mater. Res. 2017, 108, 942–958; https://doi.org/10.3139/146.111550.Search in Google Scholar
15. Taubert, F., Seidel, J., Hüttl, R., Bobnar, M., Gumeniuk, R., Mertens, F. J. Chem. Thermodyn. 2018, 116, 323–329; https://doi.org/10.1016/j.jct.2017.09.033.Search in Google Scholar
16. Taubert, F., Seidel, J., Hüttl, R., Bobnar, M., Gumeniuk, R., Mertens, F. J. Chem. Thermodyn. 2019, 130, 119–128; https://doi.org/10.1016/j.jct.2018.09.035.Search in Google Scholar
17. Loos, S., Gruner, D., Abdel-Hafiez, M., Seidel, J., Hüttl, R., Wolter, A. U., Bohmhammel, K., Mertens, F. J. Chem. Thermodyn. 2015, 85, 77–85; https://doi.org/10.1016/j.jct.2015.01.007.Search in Google Scholar
18. Della Gatta, G., Richardson, M. J., Sarge, S. M., Stølen, S. Pure Appl. Chem. 2006, 78, 1455–1476; https://doi.org/10.1351/pac200678071455.Search in Google Scholar
19. Kitashita, K., Hagiwara, R., Ito, Y., Tamada, O. J. Fluorine Chem. 2000, 101, 173–179; https://doi.org/10.1016/s0022-1139(99)00155-4.Search in Google Scholar
20. Bode, H., Teufer, G. Z. Anorg. Allg. Chem. 1952, 268, 20–24; https://doi.org/10.1002/zaac.19522680104.Search in Google Scholar
21. Zagorac, D., Müller, H., Ruehl, S., Zagorac, J., Rehme, S. J. Appl. Crystallogr. 2019, 52, 918–925; https://doi.org/10.1107/s160057671900997x.Search in Google Scholar
22. Maier, C. G., Kelley, K. K. J. Am. Chem. Soc. 1932, 54, 3243–3246; https://doi.org/10.1021/ja01347a029.Search in Google Scholar
23. Pinatel, E. R., Albanese, E., Civalleri, B., Baricco, M. J. Alloys Compd. 2015, 645, S64−S68; https://doi.org/10.1016/j.jallcom.2015.01.199.Search in Google Scholar
24. Dematteis, E. M., Jensen, S. R., Jensen, T. R., Baricco, M. J. Chem. Thermodyn. 2020, 143, 106055–106064; https://doi.org/10.1016/j.jct.2020.106055.Search in Google Scholar
25. Röhr, C., Kniep, R. Z. Naturforsch. 1994, 49b, 650–654; https://doi.org/10.1515/znb-1994-0514.Search in Google Scholar
26. Riedel, E., Janiak, C. Anorganische Chemie, Vol. 9; De Gruyter: Berlin, Boston, 2015.10.1515/9783110355284Search in Google Scholar
27. Roine, A. HSC Chemistry; Outokumpu Research Oy: Pori, Finland, 2002.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Zur Kenntnis ternärer Oxoarsenate(III) dreiwertiger Lanthanoide: Synthese und Charakterisierung von LnAsO3- und Ln 2As4O9-Vertretern mit Ln = La und Ce sowie Ln = Pr, Nd, Sm–Gd
- Synthesis, structures and photophysical properties of two new Cu(I) complexes
- A zinc coordination compound showing green photoluminescence
- A switch from ferro- to antiferromagnetic ordering in the solid solutions CeAuGe1−xSn x
- Crystal structures and luminescence properties of Li6MN4:Ce3+ (M = Mo, W)
- Synthesis and crystal structure of the zinc borate Zn6B22O39·H2O
- Heat capacity of sodium and potassium hexafluorophosphate
- The crystal and molecular structure of 1-ferrocenyl-3,3-bis(methylthio)prop-2-en-1-one
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Zur Kenntnis ternärer Oxoarsenate(III) dreiwertiger Lanthanoide: Synthese und Charakterisierung von LnAsO3- und Ln 2As4O9-Vertretern mit Ln = La und Ce sowie Ln = Pr, Nd, Sm–Gd
- Synthesis, structures and photophysical properties of two new Cu(I) complexes
- A zinc coordination compound showing green photoluminescence
- A switch from ferro- to antiferromagnetic ordering in the solid solutions CeAuGe1−xSn x
- Crystal structures and luminescence properties of Li6MN4:Ce3+ (M = Mo, W)
- Synthesis and crystal structure of the zinc borate Zn6B22O39·H2O
- Heat capacity of sodium and potassium hexafluorophosphate
- The crystal and molecular structure of 1-ferrocenyl-3,3-bis(methylthio)prop-2-en-1-one