Home Aminosilyl-substituted cyclopentadienyl complexes of alkali metals
Article
Licensed
Unlicensed Requires Authentication

Aminosilyl-substituted cyclopentadienyl complexes of alkali metals

  • Media Mohamad , Jessica Lambert , Lisa Wirtz , Bernd Morgenstern and André Schäfer ORCID logo EMAIL logo
Published/Copyright: May 22, 2023
Become an author with De Gruyter Brill

Abstract

(Pyrrolidinyldimethylsilyl)tetramethylcyclopentadienide complexes of lithium, sodium and potassium were synthesized and characterized, including crystal structure determinations. The lithium cyclopentadienide compound was used as a Cp transfer reagent to prepare the corresponding ferrocene, stannocene and plumbocene.


Corresponding author: André Schäfer, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Saarland, Germany, E-mail:
Media Mohamad and Jessica Lambert contributed equally to this work.
  1. Author contributions: MM: lead: synthesis and characterization of compounds 1, 2ac and 4a, b. JL: lead: synthesis and characterization of compounds 1 and 2a, supporting: characterization of compound 3; writing, reviewing and editing of the manuscript. LW: supporting: synthesis and characterization of compounds 1, 2ac and 4a, b; reviewing of the manuscript. BM: lead: X-ray analysis. AS: lead: synthesis and characterization of compound 3; DFT calculations; writing, reviewing and editing of the manuscript; project administration and supervision; funding acquisition.

  2. Research funding: Support and funding by the Deutsche Forschungsgemeinschaft, DFG, (Emmy Noether program SCHA1915/3-1/2) is gratefully acknowledged. Instrumentation and technical assistance for this work were provided by the Service Center X-ray Diffraction, with financial support from Saarland University and Deutsche Forschungsgemeinschaft, DFG, (INST256/506-1).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Jutzi, P., Burford, N. Chem. Rev. 1999, 99, 969–990; https://doi.org/10.1021/cr941099t.Search in Google Scholar PubMed

2. Poli, R. Chem. Rev. 1991, 91, 509–551; https://doi.org/10.1021/cr00004a004.Search in Google Scholar

3. Beswick, M. A., Palmer, J. S., Wright, D. S. Chem. Soc. Rev. 1998, 27, 225–232.10.1039/a827225zSearch in Google Scholar

4. Budzelaar, P. H. M., Engelberts, J. J., van Lenthe, J. H. Organometallics 2003, 22, 1562–1576; https://doi.org/10.1021/om020928v.Search in Google Scholar

5. Jutzi, P., Reumann, G. J. Chem. Soc., Dalton Trans. 2000, 2237–2244; https://doi.org/10.1039/b001365j.Search in Google Scholar

6. Hanusa, T. P. Organometallics 2002, 21, 2559–2571; https://doi.org/10.1021/om020168o.Search in Google Scholar

7. Lauk, S., Schäfer, A. Eur. J. Inorg. Chem. 2021, 5026–5036; https://doi.org/10.1002/ejic.202100770.Search in Google Scholar

8. Frei, A. Chem. Eur. J. 2019, 25, 7074–7090; https://doi.org/10.1002/chem.201900276.Search in Google Scholar PubMed

9. Mas-Roselló, J., Herraiz, A. G., Audic, B., Laverny, A., Cramer, N. Angew. Chem. Int. Ed. 2021, 60, 13198–13224; https://doi.org/10.1002/anie.202008166.Search in Google Scholar PubMed

10. Müller, C., Warken, J., Huch, V., Morgenstern, B., Bischoff, I.-A., Zimmer, M., Schäfer, A. Chem. Eur. J. 2021, 27, 6500–6510; https://doi.org/10.1002/chem.202005198.Search in Google Scholar PubMed PubMed Central

11. Van Leusen, D., Hessen, B. Organometallics 2001, 20, 224–226; https://doi.org/10.1021/om000678n.Search in Google Scholar

12. Škoch, K., Císařová, I., Schulz, J., Siemeling, U., Štěpnička, P. Dalton Trans. 2017, 46, 10339–10354; https://doi.org/10.1039/c7dt02336g.Search in Google Scholar PubMed

13. Guthardt, R., Blanckenberg, J., Bruhn, C., Siemeling, U. Chem. Commun. 2021, 57, 12984–12987; https://doi.org/10.1039/d1cc05287j.Search in Google Scholar PubMed

14. Luo, Y., Chi, S., Chen, J. New J. Chem. 2013, 37, 2675–2682; https://doi.org/10.1039/c3nj00214d.Search in Google Scholar

15. Deng, M., Chi, S., Luo, Y. New J. Chem. 2015, 39, 7575–7581; https://doi.org/10.1039/c5nj00279f.Search in Google Scholar

16. Schaefer, W. P., Cotter, W. D., Bercaw, J. E. Acta Crystallogr. 1993, C49, 1489–1492; https://doi.org/10.1107/s0108270193001842.Search in Google Scholar

17. Dinnebier, R. E., Behrens, U., Olbrich, F. Organometallics 1997, 16, 3855–3858; https://doi.org/10.1021/om9700122.Search in Google Scholar

18. Tedesco, C., Dinnebier, R. E., Olbrich, F., van Smaalen, S. Acta Crystallogr. 2001, B57, 673–679; https://doi.org/10.1107/s010876810101237x.Search in Google Scholar PubMed

19. Harder, S. Coord. Chem. Rev. 1998, 176, 17–66; https://doi.org/10.1016/s0010-8545(98)00113-1.Search in Google Scholar

20. Dinnebier, R. E., Schneider, M., van Smaalen, S., Olbrich, F., Behrens, U. Acta Crystallogr. 1999, B55, 35–44; https://doi.org/10.1107/s0108768198007009.Search in Google Scholar PubMed

21. Harder, S., Prosenc, M.-H. Angew. Chem. Int. Ed. Engl. 1994, 33, 1744–1746; https://doi.org/10.1002/anie.199417441.Search in Google Scholar

22. DFT calculations were performed with the Gaussian 16, Revision C.01 software suite. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A.Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 16, (revision C.01); Gaussian, Inc.: Wallingford CT (USA), 2019.Search in Google Scholar

23. Adamo, C., Barone, V. J. Chem. Phys. 1999, 110, 6158–6170; https://doi.org/10.1063/1.478522.Search in Google Scholar

24. Grimme, S., Antony, J., Ehrlich, S., Krieg, H. J. Chem. Phys. 2010, 132, 154104; https://doi.org/10.1063/1.3382344.Search in Google Scholar PubMed

25. Weigend, F., Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305; https://doi.org/10.1039/b508541a.Search in Google Scholar PubMed

26. Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065; https://doi.org/10.1039/b515623h.Search in Google Scholar PubMed

27. Müller, C., Stahlich, A., Wirtz, L., Gretsch, C., Huch, V., Schäfer, A. Inorg. Chem. 2018, 57, 8050–8053; https://doi.org/10.1021/acs.inorgchem.8b01432.Search in Google Scholar PubMed

28. Müller, C., Andrada, D. M., Bischoff, I.-A., Zimmer, M., Huch, V., Steinbrück, N., Schäfer, A. Organometallics 2019, 38, 1052–1061; https://doi.org/10.1021/acs.organomet.8b00861.Search in Google Scholar

29. Staub, L.-H., Lambert, J., Müller, C., Morgenstern, B., Zimmer, M., Warken, J., Koldemir, A., Block, T., Pöttgen, R., Schäfer, A. Dalton Trans. 2022, 51, 10714–10720; https://doi.org/10.1039/d2dt00582d.Search in Google Scholar PubMed

30. Fulmer, G. R., Miller, A. J. M., Sherden, N. H., Gottlieb, H. E., Nudelman, A., Stoltz, B. M., Bercaw, J. E., Goldberg, K. I. Organometallics 2010, 29, 2176–2179; https://doi.org/10.1021/om100106e.Search in Google Scholar

31. Stern, D., Sabat, M., Marks, T. J. J. Am. Chem. Soc. 1990, 112, 9558–9575; https://doi.org/10.1021/ja00182a015.Search in Google Scholar

32. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

33. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central

34. Hübschle, C. B., Sheldrick, G. M., Dittrich, B. J. Appl. Crystallogr. 2011, 44, 1281–1284; https://doi.org/10.1107/s0021889811043202.Search in Google Scholar PubMed PubMed Central

Received: 2023-02-27
Accepted: 2023-03-31
Published Online: 2023-05-22
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0012/html?lang=en
Scroll to top button