Abstract
At ambient conditions, PdSe2 dichalcogenides crystallize in the layered PdS2-type structure. If pressure is applied, the coordination number of palladium atoms increases and the three-dimensional pyrite-type structure with octahedral (PdSe6)4− coordination geometry is observed. For the first time, single crystals of a pyrite-type PdSe2 modification could be obtained and characterized, which were grown by multianvil high-pressure/high-temperature synthesis at 7.5 GPa and 1023 K. The crystals show the expected pyrite-type space group Pa3̅ (no. 205) and refinement results of a=613.26(3) pm, R1=0.0233, and wR2=0.0247 (all data) were received for HP-Pd0.84(1)Se2. The single-crystal data revealed significant defect formation on the palladium site with 16% vacancies, which is in line with the orthorhombic PdX2-type high-pressure polymorphs HP-Pd0.94(1)S2 and HP-Pd0.88(1)Se2. The tendency of vacancy formation on the palladium site could also be verified by EDX measurements.
Acknowledgements
We thank Prof. Dr. H. Huppertz for continuous support and usage of all the facilities of the Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck. This work was financially supported by the Tiroler Wissenschaftsfond (TWF); project no: 235863.
References
[1] H. Lüschen, Die Namen der Steine: das Mineralreich im Spiegel der Sprache, Ott Verlag, München, 1979.Search in Google Scholar
[2] E. T. Allen, J. L. Crenshaw, J. Johnston, E. S. Larsen, Z. Anorg. Chem.1912, 76, 201.10.1002/zaac.19120760110Search in Google Scholar
[3] N. E. Brese, H. G. von Schnering, Z. Anorg. Allg. Chem.1994, 620, 393.10.1002/zaac.19946200302Search in Google Scholar
[4] E. Dahl, Acta Chem. Scand. A1969, 23, 2677.10.3891/acta.chem.scand.23-2677Search in Google Scholar
[5] W. Chen, J. S. Tse, J. Z. Jiang, Solid State Commun.2010, 150, 181.10.1016/j.ssc.2009.10.029Search in Google Scholar
[6] P. Bayliss, Am. Mineral.1989, 74, 1168.Search in Google Scholar
[7] S. Furuseth, K. Selte, K. Kjekshus, Acta Chem. Scand. A1967, 21, 527.10.3891/acta.chem.scand.21-0527Search in Google Scholar
[8] G. S. Saini, L. D. Calvert, R. D. Heyding, J. B. Taylor, Can. J. Chem.1964, 42, 620.10.1139/v64-091Search in Google Scholar
[9] S. L. Bennett, R. D. Heyding, Can. J. Chem.1966, 44, 3017.10.1139/v66-444Search in Google Scholar
[10] D. Carre, D. Avignant, R. C. Collins, A. Wold, Inorg. Chem.1979, 18, 1370.10.1021/ic50195a043Search in Google Scholar
[11] H. Schröcke, K. L. Weiner, Mineralogie: Ein Lehrbuch auf systematischer Grundlage, De Gruyter, Berlin, 1981.10.1515/9783110836868Search in Google Scholar
[12] C. Soulard, X. Rocquefelte, P. E. Petit, M. Evain, S. Jobic, J. P. Itié, P. Munsch, H. J. Koo, M. H. Whangbo, Inorg. Chem.2004, 43, 1943.10.1021/ic0352396Search in Google Scholar PubMed
[13] F. Grønvold, E. Røst, Acta Crystallogr.1957, 10, 329.10.1107/S0365110X57000948Search in Google Scholar
[14] V. N. Larchev, S. V. Popova, Inorg. Mater.1978, 14, 611.10.1080/00107530.1978.10745569Search in Google Scholar
[15] C. Pirard, F. Hatert, Can. Mineral.2008, 46, 219.10.3749/canmin.46.1.219Search in Google Scholar
[16] A. C. Roberts, W. H. Paar, M. A. Cooper, D. Topa, A. J. Criddle, J. Jedwab, Mineral. Mag.2002, 66, 173.10.1180/0026461026610020Search in Google Scholar
[17] E. Selb, M. Tribus, G. Heymann, Inorg. Chem.2017, 56, 5885.10.1021/acs.inorgchem.7b00544Search in Google Scholar PubMed
[18] E. Selb, T. Götsch, O. Janka, S. Penner, G. Heymann, Z. Anorg. Allg. Chem.2017, 643, 1415.10.1002/zaac.201700140Search in Google Scholar
[19] H. Huppertz, G. Heymann, U. Schwarz, M. R. Schwarz in Handbook of Solid State Chemistry, Vol. 2 (Eds.: R. Dronskowski, S. Kikkawa, A. Stein), Wiley-VCH, Weinheim, 2017, chapter 2, pp. 23–48.10.1002/9783527691036.hsscvol2004Search in Google Scholar
[20] H. Huppertz, Z. Kristallogr.2004, 219, 330.10.1524/zkri.219.6.330.34633Search in Google Scholar
[21] D. Walker, M. A. Carpenter, C. M. Hitch, Am. Mineral.1990, 75, 1020.Search in Google Scholar
[22] D. Walker, Am. Mineral.1991, 76, 1092.10.1007/978-1-4615-3968-1_10Search in Google Scholar
[23] D. C. Rubie, Phase Trans.1999, 68, 431.10.1080/01411599908224526Search in Google Scholar
[24] Apex2 (version 2014.11-0), Cell_Now (version 2008/4), Saint (version 8.34A), Twinabs (version 2012/1), and Sadabs (version 2014/5), Bruker AXS Inc., Madison, Wisconsin (USA).Search in Google Scholar
[25] G. Sheldrick, Acta Crystallogr.2015, A71, 3.10.1107/S2053273314026370Search in Google Scholar
[26] G. M. Sheldrick, Shelxl, Crystal Structure Refinement, Multi-CPU Version, University of Göttingen, Göttingen (Germany) 2013.Search in Google Scholar
[27] G. Sheldrick, Acta Crystallogr.2015, C71, 3.Search in Google Scholar
[28] Y. Le Page, J. Appl. Crystallogr.1988, 21, 983.10.1107/S0021889888007022Search in Google Scholar
[29] A. Spek, Acta Crystallogr. D2009, 65, 148.10.1107/S090744490804362XSearch in Google Scholar PubMed PubMed Central
[30] C. T. Prewitt, R. T. Downs, Rev. Mineral. Geochem.1998, 37, 283.10.1515/9781501509179-011Search in Google Scholar
[31] E. Nowack, D. Schwarzenbach, W. Gonschorek, T. Hahn, Z. Kristallogr.1989, 186, 213.Search in Google Scholar
[32] R. Wu, Y. F. Zheng, X. G. Zhang, Y. F. Sun, J. B. Xu, J. K. Jian, J. Cryst. Growth2004, 266, 523.10.1016/j.jcrysgro.2004.02.020Search in Google Scholar
[33] E. Nowack, D. Schwarzenbach, T. Hahn, Acta Crystallogr.1991, B47, 650.10.1107/S0108768191004871Search in Google Scholar
[34] W. Paszkowicz, J. A. Leiro, J. Alloys Compd.2005, 401, 289.10.1016/j.jallcom.2005.02.052Search in Google Scholar
[35] A. Kjekshus, T. Rakke, A. F. Andersen, Acta Chem. Scand. A1978, 32, 209.10.3891/acta.chem.scand.32a-0209Search in Google Scholar
[36] N. Wiberg, Lehrbuch der Anorganischen Chemie, Vol. 102, de Gruyter, Berlin, 2008.Search in Google Scholar
[37] D. Hohnke, E. Parthé, Z. Kristallogr.1968, 127, 164.10.1524/zkri.1968.127.1-4.164Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this Issue
- An ionic Cd/Hg mixed-metal complex with an aminoalcohol ligand
- Bis-heterocycles. Part I: tetrahydro-5,5′- bi(1,2,4-triazin-6-ones)
- Aminkomplexe des Goldes, Teil 11a: Strukturen zweier (Methylamin)gold(I)-Komplexe
- Single-crystal structure of pyrite-type HP-Pd0.84(1)Se2 prepared by high-pressure/ high-temperature synthesis
- Rare earth-copper-magnesium intermetallics: crystal structure of CeCuMg, magnetocaloric effect of GdCuMg and physical properties of the Laves phases RECu4Mg (RE=Sm, Gd, Tb, Tm)
- Microwave-assisted solvent-free synthesis and spectral and structural characterization of cyclotriphosphazene hexakis(o-tolylamide)
- Selenium analogs of phenoxypropionic and phenoxyacetic herbicides
- Rare earth-rhodium-plumbides RE2Rh2Pb with RE = La–Nd, Sm, Gd and Tb
- Covalent linkage of [Mn2(μ-O2PPh2)2] units by trans-1,4-bis(4-pyridyl)ethene ligands into one-dimensional and two-dimensional polymers
- Note
- Crystal and molecular structure of trans-[RhCl(CO)(PtBu2Ph)2]
Articles in the same Issue
- Frontmatter
- In this Issue
- An ionic Cd/Hg mixed-metal complex with an aminoalcohol ligand
- Bis-heterocycles. Part I: tetrahydro-5,5′- bi(1,2,4-triazin-6-ones)
- Aminkomplexe des Goldes, Teil 11a: Strukturen zweier (Methylamin)gold(I)-Komplexe
- Single-crystal structure of pyrite-type HP-Pd0.84(1)Se2 prepared by high-pressure/ high-temperature synthesis
- Rare earth-copper-magnesium intermetallics: crystal structure of CeCuMg, magnetocaloric effect of GdCuMg and physical properties of the Laves phases RECu4Mg (RE=Sm, Gd, Tb, Tm)
- Microwave-assisted solvent-free synthesis and spectral and structural characterization of cyclotriphosphazene hexakis(o-tolylamide)
- Selenium analogs of phenoxypropionic and phenoxyacetic herbicides
- Rare earth-rhodium-plumbides RE2Rh2Pb with RE = La–Nd, Sm, Gd and Tb
- Covalent linkage of [Mn2(μ-O2PPh2)2] units by trans-1,4-bis(4-pyridyl)ethene ligands into one-dimensional and two-dimensional polymers
- Note
- Crystal and molecular structure of trans-[RhCl(CO)(PtBu2Ph)2]