Home The Crystal Structure of WC Type ZrTe. Advantages in Chemical Bonding as Contrasted to NiAs Type ZrTe
Article
Licensed
Unlicensed Requires Authentication

The Crystal Structure of WC Type ZrTe. Advantages in Chemical Bonding as Contrasted to NiAs Type ZrTe

  • Gissur Örlygsson and Bernd Harbrecht EMAIL logo
Published/Copyright: June 2, 2014
Become an author with De Gruyter Brill

Single crystals of WC type ZrTe were prepared from the elements. A single crystal structure determination of this structure type was performed for the first time: ZrTe (WC) crystallizes in the hexagonal space group P6̄m2 (No. 187), hP2, Z - 1, a - 377.06(5), c = 386.05(8) pm; 84 reflections, 5 variables, R(F) = 0.037. The distinctions in bonding for ZrTe (WC) and a hypothetical stoichiometric ZrTe crystallizing in the NiAs type structure were analyzed on the basis of extended Hückel calculations. Heteronuclear interactions contribute most strongly to the stability of both structures. Attractive Zr-Zr interactions energetically favour ZrTe (WC) relative to ZrTe (NiAs). The Fermi level of ZrTe (WC) resides in a local minimum of the DOS, whereas that of ZrTe (NiAs) intersects a local DOS maximum, and is pushed up by about 0.5 eV, expressing the decisive destabilization of NiAs type ZrTe. As a consequence, metal deficiency is observed for ZrTe (NiAs), in contrast to ZrTe (WC).

Received: 1999-5-20
Published Online: 2014-6-2
Published in Print: 1999-9-1

© 1946 – 2014: Verlag der Zeitschrift für Naturforschung

Articles in the same Issue

  1. Die Kristallstruktur von [PhMe3 N]4 [Pb3Br10] / Crystal Structure of [PhMe3N]4[Pb3B r10]
  2. Hexaborate Cluster Radical Anions [B6Haln Hal'6-n].- and [B6Hal5R].-(Hai, Hal' = CI, Br, I; R = H, alkyl). Chemical or Electrochemical Generation, Vibrational, UV-Vis and EPR Spectroscopy
  3. Schwingungsspektren und Normalkoordinatenanalysen der Dioxoosmate( VI) trans-[OsO2(CN)4]2-, trans-[OsO2(CN)2(0H )]22- und trans-[OsO2(CN)2(OCH3)]22 sowie Kristallstruktur von trans-(Ph3PNPPh3)2[OsO2(CN)2(OCH3)]2 / Vibrational Spectra and Normal Coordinate Analysis of the Dioxoosmates(VI) trans-[OsO2(CN)4]2-, trans-[OsO2 (CN)2(OH)]22- and trans-[OsO2(CN)2(OCH3]22- , and Crystal Structure of trans-(Ph3PNPPh3)2[OsO2(CN)2(OCH3)]2
  4. Darstellung, Schwingungsspektren und Normalkoordinatenanalysen der Dioxoosmate(VI) trans-[OsO2(CN)2(ox)]2-, transs-[OsO2(CN)2(mal)]2- und trans-[OsO2(CN)2(N2H2C2O2)]2- / Synthesis, Vibrational Spectra and Normal Coordinate Analysis of the Dioxoosmates(VI) frans-[OsO2(CN)2(ox)]2- , trans-[OsO2 (CN)2(mal)]2- and trans-[OsO2 (CN)2(N2H2C2O2)]2-
  5. Structure of [μ-S2{Ru(PCy3)('S4')}2] · 2.5 THF ·0.5 Et2O Containing Homochiral Metal Complex Fragments ['S4'2- = 1,2-Bis(mercaptophenylthio)-ethane (2-)]
  6. The Crystal Structure of WC Type ZrTe. Advantages in Chemical Bonding as Contrasted to NiAs Type ZrTe
  7. Wrap-around Encapsulated Cs(dibenzo-24-crown-8)+ Cations form Linear Coordination Polymers with Dicyanoargentate Anions Ag(CN)2-
  8. Reaktionsverhalten von β-Oxo-carbonsäurederivaten der Anthracenreihe bei der Synthese von Pyrazolen / On the Reaction Behavior of ß-Oxo Carbonic Acid Derivatives of the Anthracene Series in Pyrazole Synthesis
  9. Electrochemical Electron Transfer Reactions of M(ttcn)23+/2+ (M = Co, Pd, Pt, Au; ttcn = 1,4,7-trithiacyclononane): the Relation of Reaction Volumes and Electron Transfer Rate Constants
  10. Tuning the Energy of the NIR Absorption of Dinuclear Triphos-Cobalt-Complexes
  11. Structure and Properties of the Stannide Eu2Au2Sn5, and its Relationship with the Family of BaAl4-Related Structures
  12. 2-[N,N-Bis(trimethylstannyl)amino]pyridine and Bis[N-(N-trimethyIsiIyI- 2-aminopyridyI)]dimethyltin - Intramolecular N-Sn Co-ordination
  13. Preparation and X-Ray Structure of 4-N,N′-Bis(trimethylsilyl)- amino-3,5-diisopropylphenylselenium Trichloride
  14. One- and Two- Dimensional Copper(I) Halide Based Coordination Polymers with Bridging Pyridazine or Pyrimidine Ligands
  15. Methoxyalky 1-funktionalisierte 2,3-Dihy droimidazol-2-ylidene [1] / Methoxyalkyl Functionalized 2,3-Dihydroimidazol-2-ylidenes [1]
  16. Synthesis and Reactivity of Novel Bis(stannyl)silanes
  17. Cinnamoylacetonitrile in Heterocyclic Synthesis, Part 7 [1]. Simple Synthesis of Benzothiazepines, Pyrones and Oxazolopyridine
  18. Synthesis of 3-Phenylisoxazolo[3,4-a]carbazoles
  19. New Simple and One-Pot Synthetic Routes to Polyfunctionally Substituted Pyridines; 1,4-Dihydropyridazines and 4H-1,2-Oxazine
  20. Syntheses of Selected Quaternary Phenacylbromopyridinium Compounds and their Biological Evaluation
Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-1999-0906/html
Scroll to top button