Abstract
The ternary system of equiatomic transition-metal arsenides offers promise for topological superconductors, but their structural stability and mechanical properties remain largely unexplored. By means of the first-principles calculations, the Co2P-type orthorhombic structure is predicted to stable ground states of TT′As (T = Ti, Zr, or Hf; T′ = Ru or Os), and the experimentally reported ZrRuAs and HfRuAs with the Fe2P-type hexagonal structure only is the high-temperature phases. Although the Fe2P-type structure of ideally stoichiometric TiRuAs, TiOsAs, ZrOsAs, and HfOsAs exhibits the thermodynamic and elastic stability, their phonon spectrums always have some imaginary frequencies below 2,500 K, indicating dynamical instability. The calculations on their mechanical properties indicate that these TT′As compounds are a class of low-compressible and ductile materials. Moreover, they also possess moderately high shear stiffness and hardness. The electronic structures of representative HfRuAs are analyzed to reveal the underlying origin of the intriguing physical properties.
Funding source: The Science and Technology Commission of Shanghai Municipality
Award Identifier / Grant number: No. 25ZR1402003
Funding source: The Fundamental Research Funds for the Central Universities
Award Identifier / Grant number: No. 25D111907
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: The Science and Technology Commission of Shanghai Municipality (No. 25ZR1402003); The Fundamental Research Funds for the Central Universities (No. 25D111907).
-
Data availability: The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
[1] F. Tang, H. C. Po, A. Vishwanath, and X. Wan, “Comprehensive search for topological materials using symmetry indicators,” Nature, vol. 566, no. 7745, pp. 486–489, 2019. https://doi.org/10.1038/s41586-019-0937-5.Search in Google Scholar PubMed
[2] Z. Yang, et al.., “Superconductivity in unconventional metals,” NPJ Comput. Mater., vol. 10, no. 1, p. 25, 2024. https://doi.org/10.1038/s41524-024-01210-z.Search in Google Scholar
[3] Y. Ando and L. Fu, “Topological crystalline insulators and topological superconductors: from concepts to materials,” Annu. Rev. Condens. Matter Phys., vol. 6, no. 1, p. 361, 2015. https://doi.org/10.1146/annurev-conmatphys-031214-014501.Search in Google Scholar
[4] X. L. Qi and S. C. Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys., vol. 83, no. 4, p. 1057, 2011. https://doi.org/10.1103/revmodphys.83.1057.Search in Google Scholar
[5] G. M. Luke, et al.., “Time-reversal symmetry-breaking superconductivity in Sr2RuO4,” Nature (London), vol. 394, no. 6693, p. 559, 1998. https://doi.org/10.1038/29038.Search in Google Scholar
[6] H. J. Noh, J. Jeong, E. J. Cho, K. Kim, B. I. Min, and B.-G. Park, “Experimental realization of type-II Dirac Fermions in a PdTe2 superconductor,” Phys. Rev. Lett., vol. 119, no. 1, 2017, Art. no. 016401. https://doi.org/10.1103/physrevlett.119.016401.Search in Google Scholar PubMed
[7] Z. Guguchia, et al.., “Signatures of the topological s+− superconducting order parameter in the type-II Weyl semimetal Td-MoTe2,” Nat. Commun., vol. 8, no. 1, p. 1082, 2017. https://doi.org/10.1038/s41467-017-01066-6.Search in Google Scholar PubMed PubMed Central
[8] J. A. Krieger, et al.., “Proximity-induced odd-frequency superconductivity in a topological insulator,” Phys. Rev. Lett., vol. 125, no. 2, 2020, Art. no. 026802. https://doi.org/10.1103/physrevlett.125.026802.Search in Google Scholar PubMed
[9] Y. Qian, et al.., “Topological electronic states in HfRuP family superconductors,” NPJ Comput. Mater., vol. 5, no. 1, p. 121, 2019. https://doi.org/10.1038/s41524-019-0260-6.Search in Google Scholar
[10] H. Barz, H. C. Ku, G. P. Meisner, Z. Fisk, and B. T. Matthias, “Ternary transition metal phosphides: high-temperature superconductors,” Proc. Natl. Acad. Sci. U. S. A., vol. 77, no. 6, p. 3132, 1980. https://doi.org/10.1073/pnas.77.6.3132.Search in Google Scholar PubMed PubMed Central
[11] R. Muller, R. N. Shelton, J. W. Richardson, and R. A. Jacobson, “Superconductivity and crystal structure of a new class of ternary transition metal phosphides TT′P (T ≡ Zr, Nb, Ta and T ≡ Ru, Rh),” J. Less-Common Met., vol. 92, no. 1, p. 177, 1983. https://doi.org/10.1016/0022-5088(83)90240-0.Search in Google Scholar
[12] L. M. Schoop, V. Ksenofontov, T. Gasi, R. J. Cava, and C. Felser, “The effect of Fe doping on superconductivity in ZrRuP,” Solid State Commun., vol. 151, no. 20, p. 1504, 2011. https://doi.org/10.1016/j.ssc.2011.06.009.Search in Google Scholar
[13] G. P. Meisner, “Superconductivity and structural transformation in HfRuAs,” Phys. Lett. A, vol. 96, no. 9, p. 483, 1983. https://doi.org/10.1016/0375-9601(83)90171-8.Search in Google Scholar
[14] G. P. Meisner and H. C. Ku, “The superconductivity and structure of equiatomic ternary transition metal pnictides,” Appl. Phys. A, vol. 31, no. 4, p. 201, 1983. https://doi.org/10.1007/bf00614955.Search in Google Scholar
[15] I. Shirotani, et al.., “Superconductivity of ZrRuP,” Jpn. J. Appl. Phys., vol. 32, no. S3, p. 695, 1993. https://doi.org/10.7567/jjaps.32s3.695.Search in Google Scholar
[16] I. Shirotani, K. Tachi, N. Ichihashi, T. Adachi, T. Kikegawa, and O. Shimomura, “Phase transition of ZrRuP at high temperatures and high pressures,” Phys. Lett. A, vol. 205, no. 1, p. 77, 1995. https://doi.org/10.1016/0375-9601(95)00526-9.Search in Google Scholar
[17] D. Das, et al.., “Probing the superconducting gap structure in the noncentrosymmetric topological superconductor ZrRuAs,” Phys. Rev. B, vol. 103, no. 14, 2021, Art. no. 144516. https://doi.org/10.1103/physrevb.103.144516.Search in Google Scholar
[18] W. Duan, et al.., “Nodeless superconductivity in topologically nontrivial materials HfRuP and ZrRuAs,” J. Phys.: Condens. Matter, vol. 34, no. 45, 2022, Art. no. 455601. https://doi.org/10.1088/1361-648x/ac8f0a.Search in Google Scholar
[19] C. Li, et al.., “Pressure-tuning superconductivity in noncentrosymmetric topological materials ZrRuAs,” Materials, vol. 15, no. 21, p. 7694, 2022. https://doi.org/10.3390/ma15217694.Search in Google Scholar PubMed PubMed Central
[20] D. Das, et al.., “Superconducting gap structure of the noncentrosymmetric topological superconductor candidate HfRuP,” Magnetochemistry, vol. 9, no. 5, p. 135, 2023. https://doi.org/10.3390/magnetochemistry9050135.Search in Google Scholar
[21] F. Li, M. Zhang, and G. Wang, “Topological properties of superconductive transition metal phosphorus compounds,” Phys. Lett. A, vol. 519, 2024, Art. no. 129723. https://doi.org/10.1016/j.physleta.2024.129723.Search in Google Scholar
[22] L. Zhou, X. Chen, G. Shan, Q. Li, X. Kuang, and X. Xing, “Enhanced superconductivity in non-centrosymmetric hexagonal HfRuAs,” Phys. C, vol. 633, 2025, Art. no. 1354710. https://doi.org/10.1016/j.physc.2025.1354710.Search in Google Scholar
[23] I. Hase, “Electronic structure of the superconducting compounds o-ZrRuP and MoRuP,” Phys. Rev. B, vol. 68, no. 6, 2003, Art. no. 064506. https://doi.org/10.1103/physrevb.68.064506.Search in Google Scholar
[24] W. Y. Ching, Y. N. Xu, L. Ouyang, and W. Wong-Ng, “Comparative study of the electronic structure of ternary superconductors MoRuP and ZrRuP in the orthorhombic and hexagonal phases,” J. Appl. Phys., vol. 93, no. 10, p. 8209, 2003. https://doi.org/10.1063/1.1544521.Search in Google Scholar
[25] S. Bagci, M. Cin, H. Y. Uzunok, E. Karaca, H. M. Tutuncu, and G. P. Srivastava, “Investigating the normal state and superconducting state properties of orthorhombic and hexagonal ZrRuP: a first-principles study,” Phys. Rev. B, vol. 100, no. 18, 2019, Art. no. 184507. https://doi.org/10.1103/physrevb.100.184507.Search in Google Scholar
[26] H. M. Tutuncu, B. Taşlipinar, H. Y. Uzunok, E. Karaca, and S. Bagci, “Probing the physical and superconducting properties of hexagonal ZrRuAs: a first-principles calculation,” Phys. C, vol. 577, 2020, Art. no. 1353715.10.1016/j.physc.2020.1353715Search in Google Scholar
[27] D. K. Seo, J. Ren, M. H. Whangbo, and E. Canadell, “Electronic band structure study of the transport properties of the intermetallic compounds ZrRuP and ZrRuSi,” Inorg. Chem., vol. 36, no. 26, p. 6058, 1997. https://doi.org/10.1021/ic970148s.Search in Google Scholar PubMed
[28] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, p. 3865, 1996. https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar
[29] G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B, vol. 54, no. 16, 1996, Art. no. 11169. https://doi.org/10.1103/physrevb.54.11169.Search in Google Scholar PubMed
[30] G. Kresse and J. Daniel, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Phys. Rev. B, vol. 59, no. 3, p. 1758, 1999. https://doi.org/10.1103/physrevb.59.1758.Search in Google Scholar
[31] A. Togo, F. Oba, and I. Tanaka, “First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures,” Phys. Rev. B, vol. 78, no. 13, 2008, Art. no. 134106. https://doi.org/10.1103/physrevb.78.134106.Search in Google Scholar
[32] O. Hellman, I. A. Abrikosov, and S. I. Simak, “Lattice dynamics of anharmonic solids from first principles,” Phys. Rev. B, vol. 84, no. 18, p. 180301(R), 2011. https://doi.org/10.1103/physrevb.84.180301.Search in Google Scholar
[33] O. Hellman, P. Steneteg, I. A. Abrikosov, and S. I. Simak, “Temperature dependent effective potential method for accurate free energy calculations of solids,” Phys. Rev. B, vol. 87, no. 10, 2013, Art. no. 104111. https://doi.org/10.1103/physrevb.87.104111.Search in Google Scholar
[34] R. Hill, “The elastic behaviour of a crystalline aggregate,” Proc. Phys. Soc., London, Sect. A, vol. 65, no. 5, p. 349, 1952. https://doi.org/10.1088/0370-1298/65/5/307.Search in Google Scholar
[35] X. Q. Chen, H. Niu, D. Li, and Y. Li, “Modeling hardness of polycrystalline materials and bulk metallic glasses,” Intermetallics, vol. 19, no. 9, p. 1275, 2011. https://doi.org/10.1016/j.intermet.2011.03.026.Search in Google Scholar
[36] M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon, Oxford, Oxford University Press, 1956.Search in Google Scholar
[37] F. Mouhat and F.-X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Phys. Rev. B, vol. 90, no. 22, 2014, Art. no. 224104. https://doi.org/10.1103/physrevb.90.224104.Search in Google Scholar
[38] S. H. Jhi, J. Ihm, S. G. Louie, and M. L. Cohen, “Electronic mechanism of hardness enhancement in transition-metal carbonitrides,” Nature, vol. 399, no. 6732, p. 132, 1999. https://doi.org/10.1038/20148.Search in Google Scholar
[39] R. W. Cumberland, M. B. Weinberger, J. J. Gilman, S. M. Clark, S. H. Tolbert, and R. B. Kaner, “Osmium diboride, an ultra-incompressible, hard material,” J. Am. Chem. Soc., vol. 127, no. 20, p. 7264, 2005. https://doi.org/10.1021/ja043806y.Search in Google Scholar PubMed
[40] M. Rougab, et al.., “A first-principles study of the physical properties of the three magnetic MAX phases, Mn2SiX (X = C, N, and B),” J. Am. Ceram. Soc., 2025, Art. no. e70186. https://doi.org/10.1111/jace.70186.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston