Home Evaluation of weak discontinuity in rotating medium with magnetic field, characteristic shock and weak discontinuity interaction
Article
Licensed
Unlicensed Requires Authentication

Evaluation of weak discontinuity in rotating medium with magnetic field, characteristic shock and weak discontinuity interaction

  • Gorakh Nath ORCID logo EMAIL logo and Prakash Upadhyay
Published/Copyright: January 19, 2024

Abstract

In this article we investigated the characteristic shock and weak discontinuity wave in a rotating medium of perfect gas in the case of one-dimensional (1-D) adiabatic motion under an axial magnetic field governed by the system of PDEs (partial differential equations). We have obtained some classes of analytical solutions of the system of PDEs that demonstrates the time-space dependency. With change in the values of rotational parameter, adiabatic index and the ratio of initial magnetic pressure to dynamic pressure, effect on the acceleration wave’s amplitude and jump in the flow variables across the characteristic shock is analyzed in detail. We have obtained an expression for the jump in shock acceleration, the amplitudes of transmitted and reflected waves caused by the incident wave on the characteristic shock after the interaction of a weak discontinuity. It is investigated that the jump function across the characteristic shock decay effect, and goes to 0 as time t → ∞, whereas a weak discontinuity wave may culminate into a shock wave, depending on the initial amplitude value. It is also found that the shock formation time reduces due to the consideration of magnetic field or rotating medium.


Corresponding author: Gorakh Nath, Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

[1] P. D. Lax, “Hyperbolic systems of conservation laws II,” Commun. Pure Appl. Math., vol. 10, no. 4, pp. 537–566, 1957. https://doi.org/10.1002/cpa.3160100406.Search in Google Scholar

[2] G. B. Whitham, Linear and Nonlinear Waves, New York, John Wiley & Sons, 1974.Search in Google Scholar

[3] A. Bressan, Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem, UK, Oxford University Press, 2000.10.1093/oso/9780198507000.001.0001Search in Google Scholar

[4] G. Boillat, “Contact discontinuities,” C. R. Hebd. Seances Acad. Sci., vol. 275, no. 23, pp. 1255–1258, 1972.Search in Google Scholar

[5] G. Boillat and T. Ruggeri, “Characteristic shocks: completely and strictly exceptional systems,” Boll. Unione Mat. Ital., vol. 15, no. 1, pp. 197–204, 1978.Search in Google Scholar

[6] G. A. Nariboli, S. N. Singh, and M. P. R. Rao, “Growth of weak discontinuities in arbitrarily moving gas,” Proc. Indian Acad. Sci., vol. 68, pp. 149–163, 1968, https://doi.org/10.1007/bf03049370.Search in Google Scholar

[7] A. Jeffrey, “The propagation of weak discontinuities in quasi-linear hyperbolic systems with discontinuous coefficients. I. Fundamental theory,” Appl. Anal., vol. 3, no. 1, pp. 79–100, 1973. https://doi.org/10.1080/00036817308839058.Search in Google Scholar

[8] A. Jeffrey, “The propagation of weak discontinuities in quasi-linear hyperbolic systems with discontinuous coefficients. II. Special cases and applications,” Appl. Anal., vol. 3, no. 4, pp. 359–375, 1974. https://doi.org/10.1080/00036817408839077.Search in Google Scholar

[9] G. Boillat and T. Ruggeri, “On evolution law of weak discontinuities for hyperbolic quasi-linear systems,” Wave Motion, vol. 1, no. 2, pp. 149–152, 1979. https://doi.org/10.1016/0165-2125(79)90017-9.Search in Google Scholar

[10] T. Ruggeri, “Interaction between a discontinuity wave and a shock wave: critical time for the fastest transmitted wave, example of the polytropic fluid,” Appl. Anal., vol. 11, no. 2, pp. 103–112, 1980. https://doi.org/10.1080/00036818008839323.Search in Google Scholar

[11] J. Glimm, “The interaction of nonlinear hyperbolic waves,” Commun. Pure Appl. Math., vol. 41, no. 15, pp. 569–590, 1988. https://doi.org/10.1002/cpa.3160410505.Search in Google Scholar

[12] K. Hasan, H. Takia, M. M. Rahaman, M. H. Sikdar, B. Hossain, and K. Hossen, “Numerical study of the characteristics of shock and rarefaction waves for nonlinear wave equation,” Am. J. Appl. Sci., vol. 8, no. 1, pp. 18–24, 2022. https://doi.org/10.11648/j.ajasr.20220801.13.Search in Google Scholar

[13] L. Burn, “Ondes de choc finies dans les solides elastiques,” Int. Cent. Mech. Sci., vol. 222, pp. 63–155, 1975. https://doi.org/10.1007/978-3-7091-2728-5_2.Search in Google Scholar

[14] N. Virgopia and F. Ferraioli, “Interaction between a weak discontinuity wave and a blast wave: search for critical times for transmitted waves in self-similar flows,” Nuovo Cimento B, vol. 69, pp. 119–135, 1982, https://doi.org/10.1007/bf02721245.Search in Google Scholar

[15] A. A. Mentrelli, T. Ruggeri, M. Sugiyama, and N. Zhao, “Interaction between a shock and an acceleration wave in a perfect gas for increasing shock strength,” Wave Motion, vol. 45, no. 4, pp. 498–517, 2008. https://doi.org/10.1016/j.wavemoti.2007.09.005.Search in Google Scholar

[16] M. Pandey and V. D. Sharma, “Interaction of a characteristic shock with a weak discontinuity in a non-ideal gas,” Wave Motion, vol. 44, no. 5, pp. 346–354, 2007. https://doi.org/10.1016/j.wavemoti.2006.12.002.Search in Google Scholar

[17] J. P. Vishwakarma and P. Pathak, “Similarity solution for a cylindrical shock wave in a rotational axisymmetry gas flow,” J. Theor. Appl. Mech., vol. 50, no. 2, pp. 563–575, 2012.Search in Google Scholar

[18] S. K. Srivastava, R. K. Chaturvedi, and L. P. Singh, “Weak discontinuities in one-dimensional compressible non-ideal gas dynamics,” Z. Naturforsch. A, vol. 77, no. 5, pp. 437–447, 2022. https://doi.org/10.1515/zna-2021-0318.Search in Google Scholar

[19] S. I. Pai, Magnetogasdynamics and Plasma Physics, New York, Springer, 1992.Search in Google Scholar

[20] S. D. Korolkov and V. V. Izmodenov, “Interaction of the supersonic stellar wind with free stream of the interstellar medium: the effect of the azimuthal magnetic field of the star,” Fluid Dynam., vol. 58, no. 1, pp. 9–18, 2023. https://doi.org/10.1134/s0015462822601826.Search in Google Scholar

[21] L. P. Singh, D. B. Singh, and S. D. Ram, “Growth and decay of weak shock waves in magnetogasdynamics,” Shock Waves, vol. 26, pp. 709–716, 2016, https://doi.org/10.1007/s00193-015-0607-y.Search in Google Scholar

[22] A. Morro, “Interaction of waves with shocks in magnetofluiddynamic,” Acta Mech., vol. 35, nos. 3–4, pp. 197–213, 1980. https://doi.org/10.1007/bf01190396.Search in Google Scholar

[23] A. Strumia, “Evolution law of a weak discontinuity crossing a non characteristic shock in a non-linear dielectric medium,” Meccanica, vol. 14, pp. 67–71, 1979, https://doi.org/10.1007/bf02133451.Search in Google Scholar

[24] J. P. Vishwakarma and A. K. Yadav, “Self-similar analytical solutions for blast waves in inhomogeneous atmospheres with frozen-in-magnetic field,” Eur. Phys. J. B, vol. 34, no. 2, pp. 247–253, 2003. https://doi.org/10.1140/epjb/e2003-00218-0.Search in Google Scholar

[25] J. P. Vishwakarma and G. Nath, “Magnetogasdynamic shock waves in a rotating gas with exponentially varying density,” Int. Sch. Res. Notices, vol. 2012, 2012, Art. no. 168315.10.5402/2012/168315Search in Google Scholar

[26] G. Nath, “Magnetogasdynamic shock wave generated by a moving piston in a rotational axisymmetric isothermal flow of perfect gas with variable density,” Adv. Space Res., vol. 47, no. 9, pp. 1463–1471, 2011. https://doi.org/10.1016/j.asr.2010.11.032.Search in Google Scholar

[27] G. Nath and S. Singh, “Similarity solutions for magnetogasdynamic shock waves in a rotating ideal gas using the lie group-theoretic method,” J. Eng. Math., vol. 126, no. 1, 2021, Art. no. 9https://doi.org/10.1007/s10665-020-10073-4.Search in Google Scholar

[28] G. Nath, “Cylindrical shock wave propagation in a self-gravitating rotational axisymmetric perfect gas under the influence of azimuthal or axial magnetic field and monochromatic radiation with variable density,” Pramana – J. Phys., vol. 95, no. 3, 2021, Art. no. 149.https://doi.org/10.1007/s12043-021-02160-7Search in Google Scholar

[29] D. Zeidan, S. Govekar, and M. Pandey, “Discontinuities wave interactions in generalized magnetogasdynamics,” Acta Astronaut., vol. 180, pp. 110–114, 2021, https://doi.org/10.1016/j.actaastro.2020.12.025.Search in Google Scholar

[30] N. Virgopia and F. Ferraioli, “On the evolution of characteristic shocks in rotating flows with axial magnetic fields,” Contin. Mech. Thermodyn., vol. 6, pp. 31–49, 1994, https://doi.org/10.1007/bf01138305.Search in Google Scholar

[31] P. Lv and Y. Hu, “Singularity for the one-dimensional rotating Euler equations of Chaplygin gases,” Appl. Math. Lett., vol. 138, 2023, https://doi.org/10.1016/j.aml.2022.108511.Search in Google Scholar

[32] A. Kharicha, M. Wu, A. Ludwig, and E. K. Sibaki, “Influence of the earth magnetic field on electrically induced flows,” J. Iron Steel Res. Int., vol. 19, no. 1, pp. 63–66, 2012.Search in Google Scholar

[33] A. Kharicha, I. Teplyakov, Y. Ivochkin, M. Wu, A. Ludwig, and A. Guseva, “Experimental and numerical analysis of free surface deformation in an electrically driven flow,” Exp. Therm. Fluid Sci., vol. 62, pp. 192–201, 2015, https://doi.org/10.1016/j.expthermflusci.2014.11.014.Search in Google Scholar

[34] D. A. Vinogradov, I. O. Teplyakov, Y. P. Ivochkin, and A. Kharicha, “On the applicability of the electrodynamic approximation in the simulation of the electrovortex flow in the presence of an external magnetic field,” J. Phys. Conf. Ser., vol. 1128, no. 1, p. 012112, 2018. https://doi.org/10.1088/1742-6596/1128/1/012112.Search in Google Scholar

[35] I. Teplyakov, D. Vinogradov, Y. Ivochkin, A. Kharicha, and P. Serbin, “Applicability of different MHD approximations in electrovortex flow simulation,” Magnetohydrodynamics, vol. 54, no. 4, pp. 403–416, 2018. https://doi.org/10.22364/mhd.Search in Google Scholar

[36] A. Kharicha, et al.., “Tornados and cyclones driven by magneto-hydrodynamic forces,” Eur. J. Mech. B Fluid, vol. 94, pp. 90–105, 2022, https://doi.org/10.1016/j.euromechflu.2022.02.001.Search in Google Scholar

[37] O. G. Onishchenko, V. Fedun, A. Smolyakov, W. Horton, O. A. Pokhotelov, and G. Verth, “Tornado model for a magnetized plasma,” Phys. Plasmas, vol. 25, no. 5, p. 054503, 2018. https://doi.org/10.1063/1.5023167.Search in Google Scholar

[38] Y. Su, T. Wang, A. Veronig, M. Temmer, and W. Gan, “Solar magnetized tornadoes: relation to filaments,” Astrophys. J. Lett., vol. 756, no. 2, p. L41, 2012. https://doi.org/10.1088/2041-8205/756/2/l41.Search in Google Scholar

[39] Y. Su, et al.., “Solar magnetize tornadoes: rotational motion in tornado-like prominence,” Astrophys. J. Lett., vol. 785, no. 1, p. L2, 2014. https://doi.org/10.1088/2041-8205/785/1/l2.Search in Google Scholar

[40] M. L. Mekhalfia, et al.., “Theoretical and experimental analysis of magnetic excitation effect on aircraft engine compressor blade,” SSRN Electron. J., 2023, https://doi.org/10.2139/ssrn.4364393.Search in Google Scholar

[41] C. F. Lee, P. T. P. Ho, Z. Y. Li, N. Hirano, Q. Zhang, and H. Shang, “A rotating protostellar jet launched from the innermost disk of HH 212,” Nat. Astron., vol. 1, no. 7, 2017, https://doi.org/10.1038/s41550-017-0152.Search in Google Scholar

[42] J. P. Vanyo, Rotating Fluids in Engineering and Sciences, New York, Dover Publication, 2001.Search in Google Scholar

[43] S. I. Popel, V. N. Tytovich, and M. Y. Yu, “Shock structure in plasmas containing variable charge macro particles,” Astrophys. Space Sci., vol. 256, nos. 1–2, pp. 107–123, 1997. https://doi.org/10.1023/A:1001179306795.Search in Google Scholar

[44] S. I. Popel and A. A. Gisko, “Charged dust and shock phenomena in the solar system,” Nonlinear Process Geophys., vol. 13, no. 2, pp. 223–229, 2006. https://doi.org/10.5194/npg-13-223-2006.Search in Google Scholar

[45] T. V. Lossevaa, S. I. Popel, and A. P. Golub, “Dust ion–acoustic shock waves in laboratory, ionospheric, and astrophysical plasmas,” Plasma Phys. Rep., vol. 46, pp. 1089–1107, 2020, https://doi.org/10.1134/s1063780x20110045.Search in Google Scholar

[46] G. Nath, “Analytical solution for unsteady adiabatic and isothermal flows behind the shock wave in a rotational axisymmetric mixture of perfect gas and small solid particles,” Z. Naturforsch. A, vol. 76, no. 9, pp. 853–873, 2021. https://doi.org/10.1515/zna-2021-0022.Search in Google Scholar

[47] M. S. Ruderman, “Nonlinear waves in the solar atmosphere,” Philos. Trans. Royal Soc. A, vol. 364, no. 1839, pp.485–504, 2006. https://doi.org/10.1098/rsta.2005.1712.Search in Google Scholar PubMed

[48] M. Mathioudakis, D. B. Jess, and R. Erdélyi, “Alfven waves in the solar atmosphere: from theory to observations,” Space Sci. Rev., vol. 175, pp. 1–27, 2013. https://doi.org/10.1007/s11214-012-9944-7.Search in Google Scholar

[49] M. Tepper, “On the origin of tornadoes,” Bull. Am. Meteorol. Soc., vol. 31, no. 9, pp. 311–314, 1950. https://doi.org/10.1175/1520-0477-31.9.311.Search in Google Scholar

[50] S. A. Arsen’yev, L. V. Eppelbaum, and N. N. Ermakov, “Dangerous atmospheric events: a new physical mathematical approach,” ANAS Trans. Earth Sci., vol. 1, pp. 11–24, 2019. https://doi.org/10.33677/ggianas20190100022.Search in Google Scholar

[51] M. Sawada, T. G. Tsuru, K. Koyama, and T. Oka, “Suzaku discovery of twin thermal plasma from the tornado nebula,” Publ. Astron. Soc. Jpn., vol. 6, no. 3, pp. 849–855, 2011. https://doi.org/10.1093/pasj/63.sp3.s849.Search in Google Scholar

[52] S. Pandey and A. D. Rao, “Impact of approach angle of an impinging cyclone on generation of storm surges and its interaction with tides and wind waves,” J. Geophys. Res. Oceans, vol. 124, no. 11, pp. 7643–7660, 2019. https://doi.org/10.1029/2019jc015433.Search in Google Scholar

[53] T. Li, A. Xuan, and L. Shen, “Study of nonlinear interaction between waves and ocean currents using high-fidelity simulation and machine learning,” arXiv:2101.03439, 2021.Search in Google Scholar

Received: 2023-10-06
Accepted: 2023-12-21
Published Online: 2024-01-19
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2023-0275/html
Scroll to top button