Abstract
Dispersive characteristics of electromagnetic sound waves with frequencies less than the electron and ion gyro-frequencies are studied herein analytically and numerically at astrophysical scales. Magnetic quantization of Fermi states is concerned with the degenerate relativistic electrons fluid treated by quantum hydrodynamic model (QHD). The quantum features are included from Landau quantized Fermi pressure dependent upon the dc magnetic field, whereas the ions are treated as nondegenerate and classical. The numerical analysis verifies the analytical results. The phase speed of magnetosonic waves for relativistic degenerate plasma typically for white dwarf stars parameters is depicted from the graphical figures. In this manuscript, an overlooked feature of quantization, that is Landau quantization, is mainly focused for magnetoacoustics in plasmas.
-
Research ethics: Not applicable.
-
Author contributions: All authors have equal contribution.
-
Competing interests: Not applicable.
-
Research funding: Not applicable.
-
Data availability: Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
[1] H. Alfvén, “Existence of electromagnetic-hydrodynamic waves,” Nature, vol. 150, no. 3805, p. 405, 1942.10.1038/150405d0Search in Google Scholar
[2] F. Haas and S. Mahmood, “Magnetosonic waves in a quantum plasma with arbitrary electron degeneracy,” Phys. Rev. E, vol. 6, no. 1, p. 7, 2018.10.1103/PhysRevE.97.063206Search in Google Scholar PubMed
[3] N. Herlofson, “Magneto-hydrodynamic waves in a compressible fluid conductor,” Nature, vol. 165, no. 4208, p. 1020, 1950.10.1038/1651020a0Search in Google Scholar PubMed
[4] F. A. Asenjo, “The quantum effects of the spin and the Bohm potential in the oblique propagation of magnetosonic waves,” Phys. Lett. A, vol. 376, no. 36, p. 2496, 2012.10.1016/j.physleta.2012.06.023Search in Google Scholar
[5] W. Masood and A. Mushtaq, “Obliquely propagating magnetosonic waves in multicomponent quantum magnetoplasma,” Phys. Lett. A, vol. 372, no. 23, p. 4283, 2008.10.1016/j.physleta.2008.03.057Search in Google Scholar
[6] A. Mushtaq and A. Qamar, “Parametric studies of nonlinear magnetosonic waves in two-dimensional quantum magnetoplasmas,” Phys. Plasmas, vol. 16, no. 2, 2009. https://doi.org/10.1063/1.3073669.Search in Google Scholar
[7] S. Hussain and S. Mahmood, “Magnetoacoustic shock waves in dissipative degenerate plasmas,” Phys. Plasmas, vol. 18, p. 11, 2011. https://doi.org/10.1063/1.3660400.Search in Google Scholar
[8] R. H. Fowler and E. A. Milne, “The maxima of absorption lines in stellar spectra (second paper),” J. Astrophys. Astron., vol. 15, no. 3, p. 241, 1994.10.1007/BF02709305Search in Google Scholar
[9] S. L. Shapiro and A. Saul Teukolsky, Black holes, white dwarfs, and neutron stars: The physics of compact objects, New York, John Wiley & Sons, 2008.Search in Google Scholar
[10] D. Koester and G. Chanmugam, “Physics of white dwarf stars,” Rep. Prog. Phys., vol. 53, no. 7, p. 837, 1990.10.1088/0034-4885/53/7/001Search in Google Scholar
[11] D. Koester, “Trans-neptunian objects,” Astron. Astrophys. Rev., vol. 11, pp. 1–31, 2002. https://doi.org/10.1007/s001590100014.Search in Google Scholar
[12] R. P. Drake, “High-energy-density physics,” Phys. Today, vol. 63, no. 6, p. 28, 2010.10.1063/1.3455249Search in Google Scholar
[13] T. C. Killian, “Cool vibes,” Nature, vol. 441, no. 7091, p. 297, 2006.10.1038/441297aSearch in Google Scholar PubMed
[14] S. H. Glenzer and R. Redmer, “X-ray Thomson scattering in high energy density plasmas,” Rev. Mod. Phys., vol. 81, no. 4, p. 1625, 2009.10.1103/RevModPhys.81.1625Search in Google Scholar
[15] G. Manfredi, “How to model quantum plasmas,” Fields Inst. Commun., vol. 46, p. 263, 2005.10.1090/fic/046/10Search in Google Scholar
[16] M. Salimullah, M. Jamil, H. A. Shah, and G. Murtaza, “Jeans instability in a quantum dusty magnetoplasma,” Phys. Plasmas, vol. 16, no. 1, 2009. https://doi.org/10.1063/1.3070664.Search in Google Scholar
[17] M. Salimullah, M. Jamil, I. Zeba, Ch. Uzma, and H. A. Shah, “Drift wave instability in a nonuniform quantum dusty magnetoplasma,” Phys. Plasmas, vol. 16, no. 3, p. 3, 2009. https://doi.org/10.1063/1.3086861.Search in Google Scholar
[18] M. Jamil, M. Shahid, I. Zeba, M. Salimullah, H. A. Shah, and G. Murtaza, “Quantum modification of dust shear Alfvén wave in plasmas,” Phys. Plasmas, vol. 19, no. 2, 2012. https://doi.org/10.1063/1.3684641.Search in Google Scholar
[19] A. Hussain, I. Zeba, M. Salimullah, G. Murtaza, and M. Jamil, “Modified screening potential in a high density inhomogeneous quantum dusty magnetoplasma,” Phys. Plasmas, vol. 17, no. 5, 2010. https://doi.org/10.1063/1.3420277.Search in Google Scholar
[20] I. Zeba, Ch. Uzma, M. Jamil, M. Salimullah, and P. K. Shukla, “Colloidal crystal formation in a semiconductor quantum plasma,” Phys. Plasmas, vol. 17, no. 3, 2010.10.1063/1.3334376Search in Google Scholar
[21] M. Jamil, M. Shahid, W. Ali, M. Salimullah, H. A. Shah, and G. Murtaza, “Erratum: “The parametric decay of dust ion acoustic waves in non-uniform quantum dusty magnetoplasmas” [Phys. Plasmas 18, 063705 (2011)],” Phys. Plasmas, vol. 18, no. 6, 2011. https://doi.org/10.1063/1.3626819.Search in Google Scholar
[22] G. Brodin, M. Marklund, and G. Manfredi, “Quantum plasma effects in the classical regime,” Phys. Rev. Lett., vol. 100, no. 17, p. 175001, 2008.10.1103/PhysRevLett.100.175001Search in Google Scholar PubMed
[23] A. K. Harding and L. Dong, “Physics of strongly magnetized neutron stars,” Rep. Prog. Phys., vol. 69, no. 9, p. 2631, 2006.10.1088/0034-4885/69/9/R03Search in Google Scholar
[24] S. H. Glenzer, et al.., “Observations of plasmons in warm dense matter,” Phys. Rev. Lett., vol. 98, no. 6, p. 065002, 2007.Search in Google Scholar
[25] C. L. Gardner and C. Ringhofer, “Smooth quantum potential for the hydrodynamic model,” Phys. Rev. E, vol. 53, no. 1, p. 157, 1996.10.1103/PhysRevE.53.157Search in Google Scholar PubMed
[26] P. K. Shukla and B. Eliasson, “Formation and dynamics of dark solitons and vortices in quantum electron plasmas,” Phys. Rev. Lett., vol. 96, no. 24, p. 245001, 2006.10.1103/PhysRevLett.96.245001Search in Google Scholar PubMed
[27] G. Manfredi, P.-A. Hervieux, Y. Yin, and N. Crouseilles, Advances in the Atomic-Scale Modeling of Nanosystems and Nanostructured Materials, Berlin, Heidelberg, Springer, 2010.Search in Google Scholar
[28] P. Ludwig, K. Balzer, A. Filinov, H. Stolz, and M. Bonitz, “On the Coulomb–dipole transition in mesoscopic classical and quantum electron–hole bilayers,” New J. Phys., vol. 10, no. 8, p. 083031, 2008.10.1088/1367-2630/10/8/083031Search in Google Scholar
[29] G. V. Shpatakovskaya, “Semiclassical model of a one-dimensional quantum dot,” J. Exp. Theor. Phys., vol. 102, p. 466, 2006.10.1134/S1063776106030095Search in Google Scholar
[30] L. K. Ang and P. Zhang, “Ultrashort-pulse Child-Langmuir law in the quantum and relativistic regimes,” Phys. Rev. Lett., vol. 98, no. 16, p. 164802, 2007.10.1103/PhysRevLett.98.164802Search in Google Scholar PubMed
[31] P. A. Markowich, A. Ringhofer, and Ch. Schmeiser, Semiconductor Equations, New York, Springer Science & Business Media, 2012.Search in Google Scholar
[32] T. C. Killian, T. Pattard, T. Pohlc, and J. M. Rostd, “Ultracold neutral plasmas,” Phys. Rep., vol. 449, no. 4–5, p. 77, 2007.10.1016/j.physrep.2007.04.007Search in Google Scholar
[33] S. H. Glenzer, et al., “Observations of plasmons in warm dense matter,” Phys. Rev. Lett., vol. 98, no. 6, p. 065002, 2007. https://doi.org/10.1103/physrevlett.98.065002.Search in Google Scholar
[34] W.-C. Tan and J. C. Inkson, “Landau quantization and the Aharonov-Bohm effect in a two-dimensional ring,” Phys. Rev. B, vol. 53, no. 11, p. 6947, 1996.10.1103/PhysRevB.53.6947Search in Google Scholar
[35] L. D. Landau, “Diamagnetismus der metalle,” Z. Phys., vol. 64, pp. 629–633, 1930.10.1007/BF01397213Search in Google Scholar
[36] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, eBook ISBN: 9781483149127, Imprint, Pergamon, Published Date, 1977.10.1016/B978-0-08-020940-1.50015-3Search in Google Scholar
[37] M. E. Rose and W. G. Holladay, “Relativistic electron theory,” Phys. Today, vol. 14, no. 11, p. 58, 1961. https://doi.org/10.1063/1.3057239.Search in Google Scholar
[38] W. Jun-ichi and S. Kawaji, “Hall effect in silicon MOS inversion layers under strong magnetic fields,” J. Phys. Soc. Jpn., vol. 44, no. 6, p. 1839, 1978.10.1143/JPSJ.44.1839Search in Google Scholar
[39] S. A. Mikhailov, “A new approach to the ground state of quantum Hall systems. Basic principles,” Phys. B, vol. 299, no. 1–2, p. 6, 2001.10.1016/S0921-4526(00)00769-9Search in Google Scholar
[40] G. Möller and R. Moessner, “Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays,” Phys. Rev. B, vol. 80, no. 14, p. 140409, 2009.10.1103/PhysRevB.80.140409Search in Google Scholar
[41] D. V. Villamizar and E. I. Duzzioni, “Quantum speed limit for a relativistic electron in a uniform magnetic field,” Phys. Rev. A, vol. 92, no. 4, p. 042106, 2015.10.1103/PhysRevA.92.042106Search in Google Scholar
[42] S. Aggarwal, B. Mukhopadhyay, and G. Gregori, “Relativistic Landau quantization in non-uniform magnetic field and its applications to white dwarfs and quantum information,” SciPost Phys., vol. 11, no. 5, p. 093, 2021.10.21468/SciPostPhys.11.5.093Search in Google Scholar
[43] D. Bandyopadhyay, S. Chakrabarty, and S. Pal, “Quantizing magnetic field and quark-hadron phase transition in a neutron star,” Phys. Rev. Lett., vol. 79, no. 12, p. 2176, 1997. https://doi.org/10.1103/physrevlett.79.2176.Search in Google Scholar
[44] A. Gupta, B. Mukhopadhyay, and Ch. A Tout, “Suppression of luminosity and mass–radius relation of highly magnetized white dwarfs,” Mon. Not. R. Astron. Soc., vol. 496, no. 1, p. 894, 2020.10.1093/mnras/staa1575Search in Google Scholar
[45] M. Bhattacharya, B. Mukhopadhyay, and S. Mukerjee, “Luminosity and cooling of highly magnetized white dwarfs: suppression of luminosity by strong magnetic fields,” Mon. Not. R. Astron. Soc., vol. 477, no. 2, p. 2705, 2018.10.1093/mnras/sty776Search in Google Scholar
[46] N. L. Tsintsadze and L. N. Tsintsadze, “Relativistic thermodynamics of magnetized fermi electron gas,” arXiv preprint arXiv:1212.2830, 2012.Search in Google Scholar
[47] L. A. Rios and P. K. Shukla, “Neutrino induced charge in a superdense two-electron Fermi plasma,” Phys. Plasmas, vol. 15, no. 1, p. 012101, 2008. https://doi.org/10.1063/1.2826438.Search in Google Scholar
[48] S. A. Khan, A. Mushtaq, and W. Masood, “Dust ion-acoustic waves in magnetized quantum dusty plasmas with polarity effect,” Phys. Plasmas, vol. 15, no. 1, p. 013701, 2008. https://doi.org/10.1063/1.2825655.Search in Google Scholar
[49] H. Ren, Z. Wu, J. Cao, and P. K. Chu, “Retraction: “Jeans instability in quantum magnetoplasma with resistive effects” [Phys. Plasmas 16, 072101 (2009)],” Phys. Plasmas, vol. 16, no. 7, p. 10, 2009. https://doi.org/10.1063/1.3194757.Search in Google Scholar
[50] M. Harwit, Astrophysical Concepts, 4th ed. USA, Springer Science+Business Media, LLC, 2006.Search in Google Scholar
[51] H. A. Shah, W. Masood, M. N. Qureshi, and N. L. Tsintsadze, “Effects of trapping and finite temperature in a relativistic degenerate plasma,” Phys. Plasmas, vol. 18, no. 10, p. 102306, 2011. https://doi.org/10.1063/1.3646403.Search in Google Scholar
[52] M. K. Deka and A. N. Dev, “Supersonic shock wave with Landau quantization in a relativistic degenerate plasma,” Chin. Phys. Lett., vol. 37, no. 1, p. 016101, 2020. https://doi.org/10.1088/0256-307x/37/1/016101.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- General
- Magnetoacoustics and magnetic quantization of Fermi states in relativistic plasmas
- Atomic, Molecular & Chemical Physics
- Investigations on the EPR parameters and local structures for the substitutional Ti3+ and W5+ centers in stishovite
- Dynamical Systems & Nonlinear Phenomena
- The effects of viscosity on the structure of shock waves in a van der Waals gas
- Traveling wavefronts in an anomalous diffusion predator–prey model
- Bifurcation and stability analysis of atherosclerosis disease model characterizing the anti-oxidative activity of HDL during short- and long-time evolution
- Nuclear Physics
- Investigation of 90,92Zr(n,γ)91,93Zr in the s-process nucleosynthesis
- Quantum Theory
- Quantum-mechanical treatment of two particles in a potential box
- Solid State Physics & Materials Science
- Unveiling the luminescence property of Pr-incorporated barium cerate perovskites for white LED applications
- Electrical and magnetic properties of MF/CuAl nanocomposites
Articles in the same Issue
- Frontmatter
- General
- Magnetoacoustics and magnetic quantization of Fermi states in relativistic plasmas
- Atomic, Molecular & Chemical Physics
- Investigations on the EPR parameters and local structures for the substitutional Ti3+ and W5+ centers in stishovite
- Dynamical Systems & Nonlinear Phenomena
- The effects of viscosity on the structure of shock waves in a van der Waals gas
- Traveling wavefronts in an anomalous diffusion predator–prey model
- Bifurcation and stability analysis of atherosclerosis disease model characterizing the anti-oxidative activity of HDL during short- and long-time evolution
- Nuclear Physics
- Investigation of 90,92Zr(n,γ)91,93Zr in the s-process nucleosynthesis
- Quantum Theory
- Quantum-mechanical treatment of two particles in a potential box
- Solid State Physics & Materials Science
- Unveiling the luminescence property of Pr-incorporated barium cerate perovskites for white LED applications
- Electrical and magnetic properties of MF/CuAl nanocomposites