Startseite Doped TiO2 slabs for water splitting: a DFT study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Doped TiO2 slabs for water splitting: a DFT study

  • Muhammad Isa Khan ORCID logo EMAIL logo , Wahid Ullah Khan und Abdul Majid
Veröffentlicht/Copyright: 4. März 2022

Abstract

The realization of water splitting at a commercial scale is one of the major obstacles to the development of a viable and long-term hydrogen economy. In this regard 3d-transition metals (TMs) doped anatase TiO2 slabs are investigated to understand the role of magnetism in water splitting using density functional theory (DFT). The structural stability of various 3d-TMs (V, Cr, Mn, Fe, Co, Ni, and Cu) doped in TiO2 ultrathin films have been investigated. The electronic band structures show that the doping of 3d-TMs makes the bandgap of TiO2 narrow which leads to the improvement of photo-reactivity as well as maintains the strong redox potential. The large magnetic moment of Fe- and Mn-doped slabs indicates that high charge transfer to water molecules with low adsorption energy. The results demonstrate that V, Fe, and Co doping makes the slabs ferromagnetic (FM), whereas Cr, Mn, Ni, and Cu doping makes the slabs non-magnetic. The water molecule is placed on each FM slab and their splitting behavior has been analyzed thoroughly. It was concluded that magnetism does not affect water splitting.


Corresponding author: Muhammad Isa Khan, Department of Physics, University of Gujrat, Gujrat, Pakistan, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] T. Faunce, S. Styring, M. R. Wasielewski, et al.., “Artificial photosynthesis as a Frontier technology for energy sustainability,” Energy Environ. Sci., vol. 6, no. 4, pp. 1074–1076, 2013. https://doi.org/10.1039/c3ee40534f.Suche in Google Scholar

[2] T. Hisatomi, J. Kubota, and K. Domen, “Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting,” Chem. Soc. Rev., vol. 43, no. 22, pp. 7520–7535, 2014. https://doi.org/10.1039/c3cs60378d.Suche in Google Scholar PubMed

[3] M. I. Khan, S. M. Zaigam, A. Majid, and M. B. Tahir, “Computational insights of alkali metal (Li/Na/K) atom decorated buckled bismuthene for hydrogen storage,” Int. J. Hydrogen Energy, vol. 46, no. 56, pp. 28700–28708, 2021. https://doi.org/10.1016/j.ijhydene.2021.06.108.Suche in Google Scholar

[4] S. U. D. Khan, Z. A. Almutairi, O. S. Al-Zaid, and S. U. D. Khan, “Development of low concentrated solar photovoltaic system with lead acid battery as storage device,” Curr. Appl. Phys., vol. 20, no. 4, pp. 582–588, 2020. https://doi.org/10.1016/j.cap.2020.02.005.Suche in Google Scholar

[5] A. Jelinska, K. Bienkowski, M. Jadwiszczak, et al.., “Enhanced photocatalytic water splitting on very thin WO3 films activated by high-temperature annealing,” ACS Catal., vol. 8, no. 11, pp. 10573–10580, 2018. https://doi.org/10.1021/acscatal.8b03497.Suche in Google Scholar

[6] F. Wang, C. Di Valentin, and G. Pacchioni, “Doping of WO3 for photocatalytic water splitting: hints from density functional theory,” J. Phys. Chem. C, vol. 116, no. 16, pp. 8901–8909, 2012. https://doi.org/10.1021/jp300867j.Suche in Google Scholar

[7] K. Ren, J. Yu, and W. Tang, “Two-dimensional ZnO/BSe van der Waals heterostructure used as a promising photocatalyst for water splitting: a DFT study,” J. Alloys Compd., vol. 812, p. 152049, 2020. https://doi.org/10.1016/j.jallcom.2019.152049.Suche in Google Scholar

[8] F. Opoku, K. K. Govender, C. G. C. E. van Sittert, and P. P. Govender, “Recent progress in the development of semiconductor‐based photocatalyst materials for applications in photocatalytic water splitting and degradation of pollutants,” Adv. Sustainable Syst., vol. 1, no. 7, p. 1700006, 2017. https://doi.org/10.1002/adsu.201700006.Suche in Google Scholar

[9] T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song, and S. L. Suib, “Photocatalytic water splitting—the untamed dream: a review of recent advances,” Molecules, vol. 21, no. 7, p. 900, 2016. https://doi.org/10.3390/molecules21070900.Suche in Google Scholar PubMed PubMed Central

[10] S. U. D. Khan, I. Wazeer, Z. Almutairi, and M. Alanazi, “Techno-economic analysis of solar photovoltaic powered electrical energy storage (EES) system,” Alex. Eng. J., vol. 61, no. 9, pp. 6739–6753, 2022.10.1016/j.aej.2021.12.025Suche in Google Scholar

[11] B. Nazir, U. ur Rehman, S. Arshad, et al.., “Enhanced photo-absorption of anatase TiO2 with Ni and Eu doping: a first principle study,” Mater. Today Proc., vol. 47, pp. S94–S98, 2021.10.1016/j.matpr.2020.05.529Suche in Google Scholar

[12] S. Higashimoto, “Titanium-dioxide-based visible-light-sensitive photocatalysis: mechanistic insight and applications,” Catalysts, vol. 9, no. 2, p. 201, 2019. https://doi.org/10.3390/catal9020201.Suche in Google Scholar

[13] C. Cheng, W.-H. Fang, R. Long, and O. V. Prezhdo, “Water splitting with a single-atom Cu/TiO2 photocatalyst: atomistic origin of high efficiency and proposed enhancement by spin selection,” JACS Au, vol. 1, no. 5, pp. 550–559, 2021. https://doi.org/10.1021/jacsau.1c00004.Suche in Google Scholar PubMed PubMed Central

[14] W.-J. Yin, H. Tang, S.-H. Wei, M. M. Al-Jassim, J. Turner, and Y. Yan, “Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO2,” Phys. Rev. B, vol. 82, no. 4, p. 045106, 2010. https://doi.org/10.1103/physrevb.82.045106.Suche in Google Scholar

[15] W. Zhu, X. Qiu, V. Iancu, et al.., “Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity,” Phys. Rev. Lett., vol. 103, no. 22, p. 226401, 2009. https://doi.org/10.1103/physrevlett.103.226401.Suche in Google Scholar PubMed

[16] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, vol. 293, no. 5528, pp. 269–271, 2001. https://doi.org/10.1126/science.1061051.Suche in Google Scholar PubMed

[17] Y. Gai, J. Li, S.-S. Li, J.-B. Xia, and S.-H. Wei, “Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity,” Phys. Rev. Lett., vol. 102, no. 3, p. 036402, 2009. https://doi.org/10.1103/PhysRevLett.102.036402.Suche in Google Scholar PubMed

[18] J. Wang, H. Sun, J. Huang, Q. Li, and J. Yang, “Band structure tuning of TiO2 for enhanced photoelectrochemical water splitting,” J. Phys. Chem. C, vol. 118, no. 14, pp. 7451–7457, 2014. https://doi.org/10.1021/jp5004775.Suche in Google Scholar

[19] C. Wang, Q. Hu, J. Huang, et al.., “Enhanced hydrogen production by water splitting using Cu-doped TiO2 film with preferred (0 0 1) orientation,” Appl. Surf. Sci., vol. 292, pp. 161–164, 2014. https://doi.org/10.1016/j.apsusc.2013.11.105.Suche in Google Scholar

[20] V. Akshay, B. Arun, S. Dash, et al.., “Defect mediated mechanism in undoped, Cu and Zn-doped TiO2 nanocrystals for tailoring the band gap and magnetic properties,” RSC Adv., vol. 8, no. 73, pp. 41994–42008, 2018. https://doi.org/10.1039/c8ra07287f.Suche in Google Scholar PubMed PubMed Central

[21] V. Akshay, B. Arun, G. Mandal, G. R. Mutta, A. Chanda, and M. Vasundhara, “Observation of optical band-gap narrowing and enhanced magnetic moment in co-doped sol–gel-derived anatase TiO2 nanocrystals,” J. Phys. Chem. C, vol. 122, no. 46, pp. 26592–26604, 2018. https://doi.org/10.1021/acs.jpcc.8b06646.Suche in Google Scholar

[22] V. Akshay, B. Arun, G. Mandal, A. Chanda, and M. Vasundhara, “Significant reduction in the optical band-gap and defect assisted magnetic response in Fe-doped anatase TiO2 nanocrystals as dilute magnetic semiconductors,” New J. Chem., vol. 43, no. 15, pp. 6048–6062, 2019. https://doi.org/10.1039/c9nj00275h.Suche in Google Scholar

[23] A. Chanda, K. Rout, M. Vasundhara, S. R. Joshi, and J. Singh, “Structural and magnetic study of undoped and cobalt doped TiO2 nanoparticles,” RSC Adv., vol. 8, no. 20, pp. 10939–10947, 2018. https://doi.org/10.1039/c8ra00626a.Suche in Google Scholar PubMed PubMed Central

[24] V. Akshay, B. Arun, G. Mandal, and M. Vasundhara, “Structural, optical and magnetic behavior of sol–gel derived Ni-doped dilute magnetic semiconductor TiO2 nanocrystals for advanced functional applications,” Phys. Chem. Chem. Phys., vol. 21, no. 5, pp. 2519–2532, 2019. https://doi.org/10.1039/c8cp06875e.Suche in Google Scholar PubMed

[25] A. Shakoor, H. Anwar, and T. Z. Rizvi, “Preparation, characterization and conductivity study of polypyrrole-pillared clay nanocomposites,” J. Compos. Mater., vol. 42, no. 20, pp. 2101–2109, 2008. https://doi.org/10.1177/0021998308094549.Suche in Google Scholar

[26] A. Nefedov, N. Akdogan, H. Zabel, R. Khaibullin, and L. Tagirov, “Spin polarization of oxygen atoms in ferromagnetic Co-doped rutile TiO2,” Appl. Phys. Lett., vol. 89, no. 18, p. 182509, 2006. https://doi.org/10.1063/1.2378398.Suche in Google Scholar

[27] Y. Wang, H. Wei, and Z. Li, “Effect of magnetic field on the physical properties of water,” Results Phys., vol. 8, pp. 262–267, 2018. https://doi.org/10.1016/j.rinp.2017.12.022.Suche in Google Scholar

[28] R. Cai, H. Yang, J. He, and W. Zhu, “The effects of magnetic fields on water molecular hydrogen bonds,” J. Mol. Struct., vol. 938, nos 1–3, pp. 15–19, 2009. https://doi.org/10.1016/j.molstruc.2009.08.037.Suche in Google Scholar

[29] S. Bhattacharjee and S.-C. Lee, “Controlling oxygen-based electrochemical reactions through spin orientation,” J. Phys. Chem. C, vol. 122, no. 1, pp. 894–901, 2017. https://doi.org/10.1021/acs.jpcc.7b10147.Suche in Google Scholar

[30] B. Huang and J. N. Hart, “DFT study of various tungstates for photocatalytic water splitting,” Phys. Chem. Chem. Phys., vol. 22, no. 3, pp. 1727–1737, 2020. https://doi.org/10.1039/c9cp05944j.Suche in Google Scholar PubMed

[31] L. Ju, Y. Dai, W. Wei, M. Li, and B. Huang, “DFT investigation on two-dimensional GeS/WS2 van der Waals heterostructure for direct Z-scheme photocatalytic overall water splitting,” Appl. Surf. Sci., vol. 434, pp. 365–374, 2018. https://doi.org/10.1016/j.apsusc.2017.10.172.Suche in Google Scholar

[32] P. Garg, K. S. Rawat, G. Bhattacharyya, S. Kumar, and B. Pathak, “Hexagonal CuCl monolayer for water splitting: a DFT study,” ACS Appl. Nano Mater., vol. 2, no. 7, pp. 4238–4246, 2019. https://doi.org/10.1021/acsanm.9b00699.Suche in Google Scholar

[33a] B. Gündüz and N. Bulut, “Effects of solvents on photonic and fluorescence properties of PtOEP phosphorescent material: experimental and computational analysis,” J. Mol. Liq., vol. 316, p. 113865, 2020.10.1016/j.molliq.2020.113865Suche in Google Scholar

b. X. Xu, C. Zhang, A. Khan, T. A. Sebaey, and M. Alkhedher, “Free vibrations of rotating CNTRC beams in thermal environment,” Case Stud. Therm. Eng., vol. 28, p. 101355, 2021. https://doi.org/10.1016/j.csite.2021.101355.Suche in Google Scholar

[34] G. T. Velde, F. M. Bickelhaupt, E. J. Baerends, et al.., “Chemistry with ADF,” J. Comput. Chem., vol. 22, no. 9, pp. 931–967, 2001. https://doi.org/10.1002/jcc.1056.Suche in Google Scholar

[35] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, p. 3865, 1996. https://doi.org/10.1103/physrevlett.77.3865.Suche in Google Scholar

[36] M. Güell, J. M. Luis, M. Sola, and M. Swart, “Importance of the basis set for the spin-state energetics of iron complexes,” J. Phys. Chem., vol. 112, no. 28, pp. 6384–6391, 2008.10.1021/jp803441mSuche in Google Scholar PubMed

[37] K. Kim and J. W. Han, “Effect of caffeic acid adsorption in controlling the morphology of gold nanoparticles: role of surface coverage and functional groups,” Phys. Chem. Chem. Phys., vol. 18, no. 40, pp. 27775–27783, 2016. https://doi.org/10.1039/c6cp04122a.Suche in Google Scholar PubMed

[38] T. Joutsuka, H. Yoshinari, and S. Yamauchi, “Facet dependence of photocatalytic activity in anatase TiO2: combined experimental and DFT study,” Bull. Chem. Soc. Jpn., vol. 94, no. 1, pp. 106–111, 2021. https://doi.org/10.1246/bcsj.20200236.Suche in Google Scholar

[39] J. R. De Lile, S. G. Kang, Y.-A. Son, and S. G. Lee, “Investigating polaron formation in anatase and brookite TiO2 by density functional theory with hybrid-functional and DFT + U methods,” ACS Omega, vol. 4, no. 5, pp. 8056–8064, 2019. https://doi.org/10.1021/acsomega.9b00443.Suche in Google Scholar PubMed PubMed Central

[40] R. Asahi, Y. Taga, W. Mannstadt, and A. J. Freeman, “Electronic and optical properties of anatase TiO2,” Phys. Rev. B, vol. 61, no. 11, p. 7459, 2000. https://doi.org/10.1103/physrevb.61.7459.Suche in Google Scholar

[41] H. Ahmad, S. Kamarudin, L. Minggu, and M. Kassim, “Hydrogen from photo-catalytic water splitting process: a review,” Renew. Sustain. Energy Rev., vol. 43, pp. 599–610, 2015. https://doi.org/10.1016/j.rser.2014.10.101.Suche in Google Scholar

[42] J. C. González-Torres, L. A. Cipriano, E. Poulain, V. Domínguez-Soria, R. García-Cruz, and O. Olvera-Neria, “Optical properties of anatase TiO2: synergy between transition metal doping and oxygen vacancies,” J. Mol. Model., vol. 24, no. 10, p. 276, 2018.10.1007/s00894-018-3816-3Suche in Google Scholar PubMed

[43] H. H. Ibrahim, A. A. Mohamed, and I. A. Ibrahim, “Electronic and optical properties of mono and co-doped anatase TiO2: first principles calculations,” Mater. Chem. Phys., vol. 252, p. 123285, 2020. https://doi.org/10.1016/j.matchemphys.2020.123285.Suche in Google Scholar

[44] K. Batalović, J. Radaković, N. Bundaleski, et al.., “Origin of photocatalytic activity enhancement in Pd/Pt-deposited anatase N-TiO2–experimental insights and DFT study of the (001) surface,” Phys. Chem. Chem. Phys., vol. 22, no. 33, pp. 18536–18547, 2020. https://doi.org/10.1039/d0cp03186k.Suche in Google Scholar PubMed

[45] F. Pei, S. Wu, G. Wang, et al.., “Theoretical study on the point defects in N-doped anatase TiO2,” J. Kor. Phys. Soc., vol. 53, no. 94, p. 2292, 2008. https://doi.org/10.3938/jkps.53.2292.Suche in Google Scholar

[46] Y. Wang, R. Zhang, J. Li, L. Li, and S. Lin, “First-principles study on transition metal-doped anatase TiO2,” Nanoscale Res. Lett., vol. 9, no. 1, p. 46, 2014. https://doi.org/10.1186/1556-276x-9-46.Suche in Google Scholar PubMed PubMed Central

[47] R. Long and N. J. English, “Density functional theory studies of doping in titania,” Mol. Simulat., vol. 36, nos. 7–8, pp. 618–632, 2010. https://doi.org/10.1080/08927021003671582.Suche in Google Scholar

[48] H. Zhang, X. Yu, J. A. McLeod, and X. Sun, “First-principles study of Cu-doping and oxygen vacancy effects on TiO2 for water splitting,” Chem. Phys. Lett., vol. 612, pp. 106–110, 2014. https://doi.org/10.1016/j.cplett.2014.08.003.Suche in Google Scholar

[49] Y. Wang, R. Zhang, J. Li, L. Li, and S. Lin, “First-principles study on transition metal-doped anatase TiO2,” Nanoscale Res. Lett., vol. 9, no. 1, pp. 1–8, 2014. https://doi.org/10.1186/1556-276X-9-46.Suche in Google Scholar

[50] R. Mahesh, T. Sreekanth, and P. V. Reddy, “Theoretical investigations of Ni-and Cu-doped TiO2,” in Oxide-based Materials and Devices VI, vol. 9364, San Francisco, California, United States, SPIE, 2015, pp. 187–192.10.1117/12.2176094Suche in Google Scholar

[51] M. I. Hussain, R. A. Khalil, and F. Hussain, “Computational exploration of structural, electronic, and optical properties of novel combinations of inorganic Ruddlesden–Popper layered perovskites Bi2XO4 (X = Be, Mg) using tran and blaha‐modified Becke–Johnson approach for optoelectronic applications,” Energy Technol., vol. 9, no. 5, p. 2001026, 2021. https://doi.org/10.1002/ente.202001026.Suche in Google Scholar

[52] K. Yang, Y. Dai, and B. Huang, “Density functional characterization of the electronic structure and visible‐light absorption of Cr‐doped Anatase TiO2,” ChemPhysChem, vol. 10, no. 13, pp. 2327–2333, 2009. https://doi.org/10.1002/cphc.200900188.Suche in Google Scholar PubMed

[53] J. Atanelov, C. Gruber, and P. Mohn, “The electronic and magnetic structure of p-element (C, N) doped rutile-TiO2; a hybrid DFT study,” Comput. Mater. Sci., vol. 98, pp. 42–50, 2015. https://doi.org/10.1016/j.commatsci.2014.10.041.Suche in Google Scholar

[54] Q. L. Chen, B. Li, G. Zheng, K. H. He, and A. S. Zheng, “First-principles calculations on electronic structures of Fe-vacancy-codoped TiO2 anatase (1 0 1) surface,” Phys. B Condens. Matter, vol. 406, no. 20, pp. 3841–3846, 2011. https://doi.org/10.1016/j.physb.2011.07.007.Suche in Google Scholar

[55] C. Lin, D. Shin, and A. A. Demkov, “Localized states induced by an oxygen vacancy in rutile TiO2,” J. Appl. Phys., vol. 117, no. 22, p. 225703, 2015. https://doi.org/10.1063/1.4922184.Suche in Google Scholar

[56] M. Zhou, Y. Wang, Y. Zhang, et al.., “Effects of oxygen vacancy on the magnetic properties of Mn (II)-doped anatase TiO2,” Chem. Phys. Lett., vol. 754, p. 137738, 2020. https://doi.org/10.1016/j.cplett.2020.137738.Suche in Google Scholar

[57] H. Peng, J. Li, S.-S. Li, and J.-B. Xia, “First-principles study of the electronic structures and magnetic properties of 3d transition metal-doped anatase TiO2,” J. Phys. Condens. Matter, vol. 20, no. 12, p. 125207, 2008. https://doi.org/10.1088/0953-8984/20/12/125207.Suche in Google Scholar

[58] N. Seña, A. Dussan, F. Mesa, E. Castaño, and R. González-Hernández, “Electronic structure and magnetism of Mn-doped GaSb for spintronic applications: a DFT study,” J. Appl. Phys., vol. 120, no. 5, p. 051704, 2016.10.1063/1.4958946Suche in Google Scholar

[59] A. Los and V. Los, “Magnetic properties of transition-metal-doped silicon carbide diluted magnetic semiconductors,” in Properties and Applications of Silicon Carbide, vol. 89, Croatia, InTech, 2011.10.5772/14727Suche in Google Scholar

[60] R. Erdogan, O. Ozbek, and I. Onal, “A periodic DFT study of water and ammonia adsorption on anatase TiO2 (001) slab,” Surf. Sci., vol. 604, nos 11–12, pp. 1029–1033, 2010. https://doi.org/10.1016/j.susc.2010.03.016.Suche in Google Scholar

Received: 2021-11-10
Revised: 2022-02-13
Accepted: 2022-02-14
Published Online: 2022-03-04
Published in Print: 2022-06-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0327/html
Button zum nach oben scrollen