Home Investigation of the non-linear vibration behaviour and 3:1 internal resonance of the multi supported nanobeam
Article
Licensed
Unlicensed Requires Authentication

Investigation of the non-linear vibration behaviour and 3:1 internal resonance of the multi supported nanobeam

  • Burak Emre Yapanmış ORCID logo EMAIL logo and Süleyman Murat Bağdatlı ORCID logo
Published/Copyright: December 23, 2021

Abstract

In this present work, linear and non-linear vibration of multi-supported nanobeams, which are a fundamental part of the nano-electromechanical systems, is examined. To the best of the researchers’ knowledge, there is no study performed into multi-supported nanobeam in the literature. The governing equations of the system are obtained by dint of the Hamilton principle and solved via the perturbation technique which is divided linear and non-linear parts of the main equations. The natural frequencies and mode shapes are calculated from the linear problem. The non-linear natural frequencies and amplitude-phase modulation graphs are obtained from the non-linear equation. All equations are written in generalized form, and 3, 4 and 5 supported nanobeams are investigated in detail. The nonlocal coefficient, support number and position and end condition types are focused on. The three to one internal resonance cases are also investigated. It is occurred that the clamped-end conditions shift right in the hardening behaviour graphs more than the simply supported condition. Moreover, it is shown that the supported numbers play a significant role in natural frequency.


Corresponding author: Burak Emre Yapanmış, Machine Program, Aliağa Vocational and Training School, Ege University, Siteler Mah. İnönü Bulvarı, İzmir, Turkey, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] H. Moayedi, M. Habibi, H. Safarpour, M. Safarpour, and L. K. Foong, “Buckling and frequency responses of a graphen nanoplatelet reinforced composite microdisk,” Int. J. Appl. Mech., vol. 11, no. 10, p. 1950102, 2019. https://doi.org/10.1142/S1758825119501023.Search in Google Scholar

[2] Y. Xing, Y. Han, K. Liu, and J. Yang, “Surface effects on large deflection of nanobeams subjected to a follower load,” Int. J. Appl. Mech., vol. 12, no. 6, p. 2050067, 2020. https://doi.org/10.1142/S1758825120500672.Search in Google Scholar

[3] H. Liu, Y. Han, and J. L. Yang, “Surface effects on large deflection of a curved elastic nanobeam under static bending,” Int. J. Appl. Mech., vol. 8, no. 8, p. 1650098, 2016. https://doi.org/10.1142/S1758825116500988.Search in Google Scholar

[4] O. Rahmani and S. S. Asemani, “Buckling and free vibration analyses of nanobeams with surface effects via various higher-order shear deformation theories,” Struct. Eng. Mech., vol. 74, no. 2, pp. 175–187, 2020. https://doi.org/10.12989/SEM.2020.74.2.175.Search in Google Scholar

[5] A. Hajarian, M. M. Zand, and N. Zolfaghari, “Effect of dispersion forces on dynamic stability of electrostatically actuated micro/nano-beams in presence of mechanical shocks,” Int. J. Appl. Mech., vol. 11, no. 9, p. 1950085, 2019. https://doi.org/10.1142/S1758825119500856.Search in Google Scholar

[6] B. E. Yapanmış, S. M. Bağdatlı, and N. Toğun, “Investigation of linear vibration behavior of middle supported nanobeam,” El-Cezeri J. Sci. Eng., vol. 7, no. 3, pp. 1450–1459, 2020. https://doi.org/10.31202/ecjse.741269.Search in Google Scholar

[7] S. D. Akbas, “Forced vibration analysis of functionally graded nanobeams,” Int. J. Appl. Mech., vol. 9, no. 7, p. 1750100,2017.10.1142/S1758825117501009Search in Google Scholar

[8] L. Chu, G. Dui, Z. Yan, and Y. Zheng, “Influence of flexoelectricity on electromechanical properties of functionally graded piezoelectric nanobeams based on modified couple stress theory,” Int. J. Appl. Mech., vol. 10, no. 9, p. 1850103, 2018.10.1142/S175882511850103XSearch in Google Scholar

[9] M. M. Khoram, M. Hosseini, A. Hadi, and M. Shishehsaz, “Bending analysis of bi-directional FGM Timoshenko nanobeam subjected to mechanical and magnetic forces and resting on Winkler–Pasternak foundation,” Int. J. Appl. Mech., vol. 12, no. 8, p. 2050093, 2020. https://doi.org/10.1142/S1758825120500933.Search in Google Scholar

[10] A. S. Sayyad and Y., M. Ghugal, “Bending, buckling and free vibration analysis of size-dependent nanoscale FG beams using refined models and Eringen’s nonlocal theory,” Int. J. Appl. Mech., vol. 12, no. 1, p. 2050007, 2020. https://doi.org/10.1142/S1758825120500076.Search in Google Scholar

[11] B. E. Yapanmış, N. Toğun, S. M. Bağdatli, and Ş. Akkoca, “Magnetic field effect on nonlinear vibration of nonlocal nanobeam embedded in nonlinear elastic foundation,” Struct. Eng. Mech., vol. 79, no. 6, pp. 723–735, 2021. https://doi.org/10.12989/SEM.2021.79.6.723.Search in Google Scholar

[12] W. Chen, L. Wang, and H. Dai, “Stability and nonlinear vibration analysis of an axially loaded nanobeam based on nonlocal strain gradient theory,” Int. J. Appl. Mech., vol. 11, no. 7, p. 1950069, 2019. https://doi.org/10.1142/S1758825119500698.Search in Google Scholar

[13] S. M. Bagdatli, “Nonlinear transverse vibrations of tensioned nanobeams using nonlocal beam theory,” Struct. Eng. Mech., vol. 55, no. 2, pp. 281–298, 2015. https://doi.org/10.12989/sem.2015.55.2.281.Search in Google Scholar

[14] A. A. Jandaghian and O. Rahmani, “Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation,” Smart Mater. Struct., vol. 25, no. 3, 2016, Art no. 035023. https://doi.org/10.1088/0964-1726/25/3/035023.Search in Google Scholar

[15] M. Hashemian, M. Falsafioon, M. Pirmoradian, and D. Toghraie, “Nonlocal dynamic stability analysis of a Timoshenko nanobeam subjected to a sequence of moving nanoparticles considering surface effects,” Mech. Mater., vol. 148, p. 103452, 2020. https://doi.org/10.1016/j.mechmat.2020.103452.Search in Google Scholar

[16] M. A. Eltaher, M. E. Khater, and S. A. Emam, “A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams,” Appl. Math. Model., vol. 40, no. 4, pp. 109–4128, 2016. https://doi.org/10.1016/j.apm.2015.11.026.Search in Google Scholar

[17] M. A. Eltaher and N. Mohamed, “Nonlinear stability and vibration of imperfect CNTs by doublet mechanics,” Appl. Math. Comput., vol. 382, p. 125311, 2020. https://doi.org/10.1016/j.amc.2020.125311.Search in Google Scholar

[18] A. A. Abdelrahman, S. Esen, C. Özarpa, and M. A. Eltaher, “Dynamics of perforated nanobeams subject to moving mass using the nonlocal strain gradient theory,” Appl. Math. Model., vol. 96, pp. 215–235, 2021. https://doi.org/10.1016/j.apm.2021.03.008.Search in Google Scholar

[19] M. A. Agwa and M. A. Eltaher, “Vibration of a carbyne nanomechanical mass sensorwith surface effect,” Appl. Phys. A, vol. 122, p. 335, 2016. https://doi.org/10.1007/s00339-016-9934-9.Search in Google Scholar

[20] M. A. Agwa and M. A. Eltaher, “Analysis of size-dependent mechanical properties of CNTs mass sensor using energy equivalent model,” Sensor. Actuator.: Phys., vol. 246, pp. 9–17, 2016. https://doi.org/10.1016/j.sna.2016.05.009.Search in Google Scholar

[21] M. A. Eltaher, F. A. Omar, W. S. Abdalla, and E. H. Gad, “Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity,” Waves Random Complex Media, vol. 29, no. 2, pp. 264–280, 2019. https://doi.org/10.1080/17455030.2018.1429693.Search in Google Scholar

[22] M. A. Eltaher, A. A. Abdelrahman, and I. Esen, “Dynamic analysis of nanoscale Timoshenko CNTs based on doublet mechanics under moving load,” Eur. Phys. J. Plus, vol. 136, p. 705, 2021. https://doi.org/10.1140/epjp/s13360-021-01682-8.Search in Google Scholar

[23] I. Esen, A. A. Abdelrhmaan, and M. A. Eltaher, “Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields,” Eng. Comput., 2021. https://doi.org/10.1007/s00366-021-01389-5.Search in Google Scholar

[24] N. Mohamed, S. A. Mohamed, and M. A. Eltaher, “Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model,” Eng. Comput., vol. 37, pp. 2823–2836, 2020. https://doi.org/10.1007/s00366-020-00976-2.Search in Google Scholar

[25] M. A. Eltaher and N. A. Mohamed, “Vibration of nonlocal perforated nanobeams with general boundary conditions,” Smart Struct. Syst., vol. 25, no. 4, pp. 501–514, 2020. https://doi.org/10.12989/sss.2020.25.4.501.Search in Google Scholar

[26] I. Esen, A. A. Daikh, and M. A. Eltaher, “Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load,” Eur. Phys. J. Plus, vol. 136, p. 458, 2021. https://doi.org/10.1140/epjp/s13360-021-01419-7.Search in Google Scholar

[27] A. A. Daikh, A. Drai, M. S. A. Houari, and M. A. Eltaher, “Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes,” Steel Compos. Struct., vol. 36, no. 6, pp. 643–656, 2020. https://doi.org/10.12989/scs.2020.36.6.643.Search in Google Scholar

[28] M. A. Eltaher, N. Mohamed, and S. A. Mohamed, “Nonlinear buckling and free vibration of curved CNTs by doublet mechanics,” Smart Struct. Syst., vol. 26, no. 2, pp. 213–226, 2020. https://doi.org/10.12989/sss.2020.26.2.213.Search in Google Scholar

[29] S. Sahmani, A. M. Fattahi, and N. A. Ahmed, “Surface elastic shell model for nonlinear primary resonant dynamics of FG porous nanoshells incorporating modal interactions,” Int. J. Mech. Sci., vol. 165, p. 105203, 2020. https://doi.org/10.1016/j.ijmecsci.2019.105203.Search in Google Scholar

[30] A. A. Daikh, M. S. A. Houari, and M. A. Eltaher, “A novel nonlocal strain gradient quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates,” Compos. Struct., vol. 262, p. 113347, 2021. https://doi.org/10.1016/j.compstruct.2020.113347.Search in Google Scholar

[31] B. Xie, S. Sahmani, B. Safaei, and B. Xu, “Nonlinear secondary resonance of FG porous silicon nanobeams under periodic hard excitations based on surface elasticity theory,” Eng. Comput., vol. 32, no. 7, 2021. https://doi.org/10.1007/s00366-019-00931-w.Search in Google Scholar

[32] S. Sahmani, M. Fotouhi, and M. M. Aghdam, “Size-dependent nonlinear secondary resonance of micro-/nano-beams made of nano-porous biomaterials including truncated cube cells,” Acta Mech., vol. 230, no. 3, pp. 1077–1103, 2019. https://doi.org/10.1007/s00707-018-2334-9.Search in Google Scholar

[33] H. Liu, H. Wu, and Z. Lyu, “Nonlinear resonance of FG multilayer beam-type nanocomposites: effects of graphene nanoplatelet-reinforcement and geometric imperfection,” Aero. Sci. Technol., vol. 98, p. 105702, 2020. https://doi.org/10.1016/j.ast.2020.105702.Search in Google Scholar

[34] A. Sarafraz, S. Sahmani, and M. M. Aghdam, “Nonlinear secondary resonance of nanobeams under subharmonic and superharmonic excitations including surface free energy effects,” Appl. Math. Model., vol. 66, pp. 195–226, 2019. https://doi.org/10.1016/j.apm.2018.09.013.Search in Google Scholar

[35] G. L. She, H. B. Liu, and B. Karami, “Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets,” Thin-Walled Struct., vol. 160, p. 107407, 2021. https://doi.org/10.1016/j.tws.2020.107407.Search in Google Scholar

[36] P. Tang, Y. Sun, S. Sahmani, and D. M. Madyira, “Isogeometric small-scale-dependent nonlinear oscillations of quasi-3D FG inhomogeneous arbitrary-shaped microplates with variable thickness,” J. Braz. Soc. Mech. Sci. Eng., vol. 43, p. 343, 2021. https://doi.org/10.1007/s40430-021-03057-7.Search in Google Scholar

[37] Y. Yuan, K. Zhao, Y. Han, S. Sahmani, and B. Safaei, “Nonlinear oscillations of composite conical microshells with in-plane heterogeneity based upon a couple stress-based shell model,” Thin-Walled Struct., vol. 154, p. 106857, 2020. https://doi.org/10.1016/j.tws.2020.106857.Search in Google Scholar

[38] R. Hou, S. Sahmani, and B. Safaei, “Nonlinear oscillations of elliptical and sector prefabricated nanoplate-type structures made of functionally graded building material,” Phys. Scripta, vol. 96, p. 115704, 2021. https://doi.org/10.1088/1402-4896/ac169d.Search in Google Scholar

[39] A. H. Nayfeh, W. Lacarbonara, and C. Chin, “Nonlinear normal modes of buckled beams: threeto-one and one-to-one internal resonances,” Nonlinear Dynam., vol. 18, no. 3, pp. 253–273, 1999.10.1115/DETC97/VIB-3957Search in Google Scholar

[40] C. Chin and A. H. Nayfeh, “Three-to-one internal resonances in hinged-clamped beams,” Nonlinear Dynam., vol. 12, no. 2, pp. 129–154, 1997.10.1023/A:1008229503164Search in Google Scholar

[41] S. M. Bağdatlı, H. R. Öz, and E. Özkaya, “Nonlinear transverse vibrations and 3:1 internal resonances of A tensioned beam on multiple supports,” Math. Comput. Appl., vol. 16, no. 1, pp. 203–215, 2011.10.3390/mca16010203Search in Google Scholar

[42] j. Wang, y. Zhu, b. Zhang, h. Shen, and j. Liu, “Nonlocal and strain gradient effects on nonlinear forced vibration of axially moving nanobeams under internal resonance conditions,” Appl. Math. Mech., vol. 41, no. 2, pp. 261–278, 2020. https://doi.org/10.1007/s10483-020-2565-5.Search in Google Scholar

[43] S. Lotfan, “Nonlinear modal interactions in a beam-mass system tuned to 3:1 and combination internal resonances based on correspondence between MTS and NSI methods,” Mech. Syst. Signal Process., vol. 164, p. 108221, 2022. https://doi.org/10.1016/j.ymssp.2021.108221.Search in Google Scholar

[44] Y. Z. Wang, “Nonlinear internal resonance of double-walled nanobeams under parametric excitation by nonlocal continuum theory,” Appl. Math. Model., vol. 48, pp. 621–634, 2017. https://doi.org/10.1016/j.apm.2017.04.018.Search in Google Scholar

[45] A. Tekin and E. S. M. ÖzkayaBağdatlı, “Three-to-one internal resonance in multiple stepped beam systems,” Appl. Math. Mech., vol. 30, pp. 1131–1142, 2009. https://doi.org/10.1007/s10483-009-0907-x.Search in Google Scholar

[46] S. M. Bagdatli and N. Togun, “Stability of fluid conveying nanobeam considering nonlocal elasticity,” Int. J. Non Lin. Mech., vol. 95, pp. 132–142, 2017. https://doi.org/10.1016/j.ijnonlinmec.2017.06.004.Search in Google Scholar

[47] M. Z. Nejad and A. Hadi, “Eringen’s non-local elasticity theory for bending analysis of bi-directional functionally graded Euler–Bernoulli nano-beams,” Int. J. Eng. Sci., vol. 106, pp. 1–9, 2016. https://doi.org/10.1016/j.ijengsci.2016.05.005.Search in Google Scholar

[48] S. C. Pradhan and T. Murmu, “Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics,” Comput. Mater. Sci., vol. 47, pp. 268–274, 2009. https://doi.org/10.1016/j.commatsci.2009.08.001.Search in Google Scholar

[49] M. A. Eltaher, A. E. Alshorbagy, and F. F. Mahmoud, “Vibration analysis of Euler–Bernoulli nanobeams by using finite element method,” Appl. Math. Model., vol. 37, pp. 4787–4797, 2013.10.1016/j.apm.2012.10.016Search in Google Scholar

[50] M. B. Stamenkovic, D. Karlicic, G. Janevski, and P. Kozic, “Nonlocal forced vibration of a double single-walled carbon nanotube system under the influence of an axial magnetic field,” J. Mech. Mater. Struct., vol. 11, no. 3, pp. 279–307, 2016. https://doi.org/10.2140/jomms.2016.11.279.Search in Google Scholar

[51] M. Şimşek, “Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory,” Compos. B Eng., vol. 56, pp. 621–628, 2014. https://doi.org/10.1016/j.compositesb.2013.08.082.Search in Google Scholar

[52] R. Ansari, R. Gholami, and H. Rouhi, “Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory,” Compos. Struct., vol. 126, pp. 216–226, 2015. https://doi.org/10.1016/j.compstruct.2015.02.068.Search in Google Scholar

[53] Z. Saadatnia, H. Askari, and E. Esmailzadeh, “Multi-frequency excitation of microbeams supported by Winkler and Pasternak foundations,” J. Vib. Control, vol. 24, pp. 1–18, 2017. https://doi.org/10.1177/1077546317695463.Search in Google Scholar

Received: 2021-10-08
Revised: 2021-11-15
Accepted: 2021-11-30
Published Online: 2021-12-23
Published in Print: 2022-04-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0300/html
Scroll to top button