Home The effect of second order slip condition on MHD nanofluid flow around a semi-circular cylinder
Article
Licensed
Unlicensed Requires Authentication

The effect of second order slip condition on MHD nanofluid flow around a semi-circular cylinder

  • Jiahui Cao , Jing Zhu EMAIL logo , Xinhui Si and Botong Li
Published/Copyright: December 16, 2021

Abstract

Steady forced convection of non-Newtonian nanofluids around a confined semi-circular cylinder subjected to a uniform magnetic field is carried out using ANSYS FLUENT. The numerical solution is obtained using the finite volume method. The user-defined scalar (UDS) is used for the first time to calculate the second order velocity slip boundary condition in semi-circular curved surface and the calculated results are compared with those of the first order velocity slip boundary condition. Besides, the effects of volume fraction, size, type of nanoparticles and magnetic field strength on heat transfer are studied. The present study displays that adding nanoparticles in non-Newtonian fluids significantly enhances heat transfer. In addition, it is observed that the heat transfer rate decreases first and then increases with the increase of Hartmann number. The effects of blocking rate on Nusselt number, wake length and heat transfer effect are shown in the form of graphs or tables.


Corresponding author: Jing Zhu, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China, E-mail:

Funding source: Fundamental Research Funds for the Central Universities of China

Award Identifier / Grant number: FRF-BR-18-008B

Acknowledgments

Project supported by National Natural Science Foundation of China (No. 11 801 029) and the Fundamental Research Funds for the Central Universities of China (No. FRF-BR-18-008B).

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix

The transformation relationship between the Cartesian coordinate system and the natural coordinate system is as follows:

(A.1) x = t sin θ , x = s cos θ y = t cos θ , y = s sin θ

A vector U could be written as:

(A.2) U x i + U y j

(A.3) U s p + U t q

where p and q are unit vector natural coordinate.

According to the two-dimensional coordinate transformation formula, the relation between ( i , j ) and ( p , q ) is expressed as follows:

(A.4) i = cos θ p sin θ q j = sin θ p cos θ q

By transformation, U s can be expressed as:

(A.5) U s = U x cos θ + U y sin θ

According to Eqs. (A.1) and (A.5), U s t can be written as:

(A.6) U s t = U x x cos θ + U y x sin θ + ( U y cos θ U x sin θ ) 1 r cos θ sin θ + U x y cos θ + U y y sin θ + ( U y cos θ U x sin θ ) 1 r sin θ cos θ

The partial derivatives θ x , θ y are obtained by the polar coordinates:

(A.7) θ x = 1 r cos θ θ y = 1 r sin θ

In line with Eq. (A.6), 2 U s t 2 can be simplified as:

(A.8) 2 U s t 2 = sin 2 θ 2 U s x 2 sin θ cos θ 2 U s x y sin θ cos θ 2 U s y x + 2 U s y 2 cos 2 θ

The second partial derivatives are expressed as follows:

(A.9) 2 U s x 2 = x U s x = 2 U x x 2 cos θ + 2 U y x 2 sin θ + 2 U x x sin θ r cos θ 2 r U y x U x 1 r 2 cos 3 θ

(A.10) 2 U s y 2 = y U s y = 2 U x y 2 cos θ + 2 U y y 2 sin θ 2 U y y cos θ r sin θ + 2 r U x y U y 1 r 2 sin 3 θ

(A.11) 2 U s x y = x U s y = 2 U x x y cos θ + 2 U y x y sin θ + U x y sin θ r cos θ U y x cos θ r sin θ + 1 r U x x 1 r U y y U y 1 r 2 sin 2 θ cos θ

(A.12) 2 U s y x = y U s x = 2 U x y x cos θ + 2 U y y x sin θ + U x y sin θ r cos θ U y x cos θ r sin θ + 1 r U x x 1 r U y y U x 1 r 2 cos 2 θ sin θ

Substituting Eqs. (A.9)(A.12) into Eq. (A.8), the expression is shown below:

(A.13) 2 U s t 2 = sin 2 θ cos θ 2 U x x 2 + cos 3 θ 2 U x y 2 + sin 3 θ 2 U y x 2 + cos 2 θ sin θ 2 U y y 2 sin θ cos 2 θ 2 U x x y sin 2 θ cos θ 2 U y x y sin θ cos 2 θ 2 U x y x sin 2 θ cos θ 2 U y y x + 2 s i n 3 θ r c o s θ 2 r sin θ cos θ U x x + 2 c o s 2 θ r 2 s i n 2 θ r U x y + 2 c o s 2 θ r 2 s i n 2 θ r U y x + 2 c o s 3 θ r s i n θ + 2 r sin θ cos θ U y y + sin 2 θ r 2 cos 3 θ + 1 r 2 cos θ U x + cos 2 θ r 2 sin 3 θ + 1 r 2 sin θ U y

References

[1] A. Dhiman, R. Ghosh, and L. Baranyi, “Hydrodynamic and thermal study of a trapezoidal cylinder placed in shear-thinning and shear-thickening non-Newtonian liquid flows,” Int. J. Mech. Sci., vols 157–158, pp. 304–319, 2019. https://doi.org/10.1016/j.ijmecsci.2019.04.045.Search in Google Scholar

[2] R. Deepak Selvakumar and S. Dhinakaran, “Heat transfer and particle migration in nanofluid flow around a circular bluff body using a two-way coupled Eulerian-Lagrangian approach,” Int. J. Heat Mass Tran., vol. 115, pp. 282–293, 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.103.Search in Google Scholar

[3] A. Kumar, A. Dhiman, and L. Baranyi, “CFD analysis of power-law fluid flow and heat transfer around a confined semi-circular cylinder,” Int. J. Heat Mass Tran., vol. 82, pp. 159–169, 2015. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.046.Search in Google Scholar

[4] S. K. Gupta, S. Ray, and D. Chatterjee, “Steady mixed convection in power-law fluids from a heated triangular cylinder,” Heat Tran. Eng., vol. 39, pp. 957–976, 2018. https://doi.org/10.1080/01457632.2017.1357773.Search in Google Scholar

[5] A. Kumar, A. Dhiman, and L. Baranyi, “Fluid flow and heat transfer around a confined semi-circular cylinder: onset of vortex shedding and effects of Reynolds and Prandtl numbers,” Int. J. Heat Mass Tran., vol. 102, pp. 417–425, 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.026.Search in Google Scholar

[6] T. Wen, L. Lu, H. Zhong, and B. Shen, “Thermal properties measurement and performance evaluation of water/ZnO nanofluid in a mini channel with offset fins,” Int. J. Heat Mass Tran., vol. 162, p. 120361, 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120361.Search in Google Scholar

[7] Q. Xiong, M. V. Bozorg, M. H. Doranehgard, K. Hong, and G. Lorenzini, “A CFD investigation of the effect of non-Newtonian behavior of Cu-water nanofluids on their heat transfer and flow friction characteristics,” J. Therm. Anal. Calorim., vol. 139, pp. 2601–2621, 2020. https://doi.org/10.1007/s10973-019-08757-w.Search in Google Scholar

[8] M. Siavashi, K. Karimi, Q. Xiong, and M. H. Doranehgard, “Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder,” J. Therm. Anal. Calorim., vol. 137, pp. 267–287, 2019. https://doi.org/10.1007/s10973-018-7945-9.Search in Google Scholar

[9] A. Tahiri and K. Mansouri, “Theoretical investigation of laminar flow convective heat transfer in a circular duct for a non-Newtonian nanofluid,” Appl. Therm. Eng., vol. 112, pp. 1027–1039, 2017. https://doi.org/10.1016/j.applthermaleng.2016.10.137.Search in Google Scholar

[10] A. K. Santra, S. Sen, and N. Chakraborty, “Study of heat transfer due to laminar flow of copper–water nanofluid through two isothermally heated parallel plates,” Int. J. Therm. Sci., vol. 48, pp. 391–400, 2009. https://doi.org/10.1016/j.ijthermalsci.2008.10.004.Search in Google Scholar

[11] M. Turkyilmazoglu, “Nanoliquid film flow due to a moving substrate and heat transfer,” Eur. Phys. J. Plus, vol. 135, p. 781, 2020. https://doi.org/10.1140/epjp/s13360-020-00812-y.Search in Google Scholar

[12] R. Deepak Selvakumar and S. Dhinakaran, “Heat transfer and particle migration in nanofluid flow around a circular bluff body using a two-way coupled Eulerian-Lagrangian approach,” Int. J. Heat Mass Tran., vol. 115, p. 282, 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.103.Search in Google Scholar

[13] R. S. Vajjha and D. K. Das, "Experimental determination of thermal conductivity of three nanofluids and development of new correlations," Int. J. Heat Mass Transfer, vol. 52, nos 21–22, pp. 4675–4682, 2009. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.027.Search in Google Scholar

[14] N. Masoumi, N. Sohrabi, and A. Behzadmehr, “A new model for calculating the effective viscosity of nanofluids,” J. Phys. D: Appl. Phys., vol. 42, no. 5, p. 055501, 2009. https://doi.org/10.1088/0022-3727/42/5/055501.Search in Google Scholar

[15] M. Valipour, R. Masoodi, S. Rashidi, M. Bovand, and M. Mirhosseini, “A numerical study on convection around a square cylinder using Al2O3-H2O nanofluid,” Therm. Sci., vol. 18, pp. 1305–1314, 2014. https://doi.org/10.2298/tsci121224061v.Search in Google Scholar

[16] I. Behroyan, S. M. Vanaki, P. Ganesan, and R. Saidur, “A comprehensive comparison of various CFD models for convective heat transfer of Al2O3 nanofluid inside a heated tube,” Int. Commun. Heat Mass Tran., vol. 70, pp. 27–37, 2016. https://doi.org/10.1016/j.icheatmasstransfer.2015.11.001.Search in Google Scholar

[17] H. I. Mohammed, D. Giddings, and G. S. Walker, “CFD simulation of a concentrated salt nanofluid flow boiling in a rectangular tube,” Int. J. Heat Mass Tran., vol. 125, pp. 218–228, 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.069.Search in Google Scholar

[18] S. Usha and N. B. Naduvinamani, “Magnetized impacts of Cattaneo-Christov double-diffusion models on the time-dependent squeezing flow of Casson fluid: A generalized perspective of Fourier and Fick’s laws,” Eur. Phys. J. Plus, vol. 134, p. 344, 2019. https://doi.org/10.1140/epjp/i2019-12715-x.Search in Google Scholar

[19] W. K. Hussam, M. C. Thompson, and G. J. Sheard, “Enhancing heat transfer in a high Hartmann number magnetohydrodynamic channel flow via torsional oscillation of a cylindrical obstacle,” Phys. Fluids, vol. 24, no. 11, p. 113601, 2012. https://doi.org/10.1063/1.4767515.Search in Google Scholar

[20] O. G. W. Cassells, W. K. Hussam, and G. J. Sheard, “Heat transfer enhancement using rectangular vortex promoters in confined quasi-two-dimensional magnetohydrodynamic flows,” Int. J. Heat Mass Tran., vol. 93, pp. 186–199, 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.006.Search in Google Scholar

[21] K. H. Wisam, H. A. H. Ahmad, and G. J. Sheardb, “Effect of vortex promoter shape on heat transfer in MHD duct flow with axial magnetic field,” Int. J. Therm. Sci., vol. 134, pp. 453–464, 2018. https://doi.org/10.1016/j.ijthermalsci.2018.06.012.Search in Google Scholar

[22] F. Ahmed and M. Iqbal, “Heat transfer analysis of MHD power law nano fluid flow through annular sector duct,” J. Therm. Sci., vol. 29, pp. 169–181, 2020. https://doi.org/10.1007/s11630-019-1126-4.Search in Google Scholar

[23] K. S. Arjun and K. Rakesh, “Heat transfer in magnetohydrodynamic nanofluid flow past a circular cylinder,” Phys. Fluids, vol. 32, p. 045112, 2020. https://doi.org/10.1063/5.0005095.Search in Google Scholar

[24] M. Erdem and Y. Varol, “Numerical investigation of heat transfer and flow characteristics of MHD nano-fluid forced convection in a pipe,” J. Therm. Anal. Calorim., vol. 139, pp. 3897–3909, 2020. https://doi.org/10.1007/s10973-020-09366-8.Search in Google Scholar

[25] M. Turkyilmazoglu, “Natural convective flow of nanofluids past a radiative and impulsive vertical plate,” J. Aero. Eng., vol. 29, no. 6, p. 04016049, 2016. https://doi.org/10.1061/(asce)as.1943-5525.0000643.Search in Google Scholar

[26] H. Huang, M. Liu, H. Gu, X. Li, X. Wu, and F. Sun, “Effect of the slip length on the flow over a hydrophobic circular cylinder,” Fluid Dynam. Res., vol. 50, p. 025515, 2018. https://doi.org/10.1088/1873-7005/aaab9b.Search in Google Scholar

[27] P. Muralidhar, N. Ferrer, R. Daniello, and J. P. Rothstein, “Influence of slip on the flow past superhydrophobic circular cylinders,” J. Fluid Mech., vol. 680, pp. 459–476, 2011. https://doi.org/10.1017/jfm.2011.172.Search in Google Scholar

[28] K. Wang, Z. Chai, G. Hou, W. Chen, and S. Xu, “Slip boundary condition for lattice Boltzmann modeling of liquid flows,” Comput. Fluids, vol. 161, pp. 60–73, 2018. https://doi.org/10.1016/j.compfluid.2017.11.009.Search in Google Scholar

[29] F. Xie, Y. Li, X. Wang, Y. Wang, G. Lei, and K. Xing, “Numerical study on flow and heat transfer characteristics of low pressure gas in slip flow regime,” Int. J. Therm. Sci., vol. 124, pp. 131–145, 2018. https://doi.org/10.1016/j.ijthermalsci.2017.09.022.Search in Google Scholar

[30] M. Turkyilmazoglu, “Magnetic field and slip effects on the flow and heat transfer of stagnation point Jeffrey fluid over deformable surfaces,” Naturforscher A, vol. 71, no. 6, pp. 549–556, 2016. https://doi.org/10.1515/zna-2016-0047.Search in Google Scholar

[31] A. K. Sreekanth, “Slip flow through long circular tubes,” Proc. of 6th Int. Symp. on Rarefied Gas Dynamics, vol. 6, pp. 67–80, 1969.Search in Google Scholar

[32] C. Aubert and S. Colin, “Higher order boundary conditions for gaseous flow in rectangular microducts,” Microscale Thermophys. Eng., vol. 5, pp. 41–54, 2001.10.1080/108939501300005367Search in Google Scholar

[33] J. Zhu, Y. Xu, and X. Han, “A non-Newtonian magnetohydrodynamics (MHD) nanofluid flow and heat transfer with nonlinear slip and temperature jump,” Mathematics, vol. 7, p. 1199, 2019. https://doi.org/10.3390/math7121199.Search in Google Scholar

[34] K. Srinivasan, P. M. V. Subbarao, and R. KaleS, “A comprehensive experimental and numerical study on gas flow through microchannels from slip to free-molecular regimes,” J. Micromech. Microeng., vol. 28, p. 9, 2018. https://doi.org/10.1088/1361-6439/aac4d5.Search in Google Scholar

[35] R. Zhang, S. Aghakhani, A. Hajatzadeh Pordanjani, S. M. Vahedi, A. Shahsavar, and M. Afrand, “Investigation of the entropy generation during natural convection of Newtonian and non-Newtonian fluids inside the L-shaped cavity subjected to magnetic field: application of lattice Boltzmann method,” Eur. Phys. J. Plus, vol. 135, p. 184, 2020. https://doi.org/10.1140/epjp/s13360-020-00169-2.Search in Google Scholar

[36] R. B. Bird, W. E. Stewert, and E. N. Lightfoot, Transport Phenomena, 1960.Search in Google Scholar

[37] B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Exp. Heat Tran., vol. 11, no. 2, pp. 151–170, 1998. https://doi.org/10.1080/08916159808946559.Search in Google Scholar

[38] Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Tran., vol. 43, no. 19, pp. 3701–3707, 2000. https://doi.org/10.1016/s0017-9310(99)00369-5.Search in Google Scholar

[39] A. Chandra and R. P. Chhabra, "Mixed convection from a heated semi-circular cylinder to power-law fluids in the steady flow regime," Int. J. Heat Mass Transfer, vol. 55, nos 1-3, pp. 214–234, 2012. https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.004.Search in Google Scholar

[40] R. Deepak Selvakumar and S. Dhinakaran, “Forced convective heat transfer of nanofluids around a circular bluff body with the effects of slip velocity using a multi-phase mixture model,” Int. J. Heat Mass Tran., vol. 106, pp. 816–828, 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.108.Search in Google Scholar

[41] M. Bovand, S. Rashidi, J. A. Esfahani, S. C. Saha, Y. T. Gu, and M. Dehesht, “Control of flow around a circular cylinder wrapped with a porous layer by magnetohydrodynamic,” J. Magn. Magn Mater., vol. 401, pp. 1078–1087, 2016. https://doi.org/10.1016/j.jmmm.2015.11.019.Search in Google Scholar

Received: 2021-07-12
Accepted: 2021-11-26
Published Online: 2021-12-16
Published in Print: 2022-04-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0197/html
Scroll to top button