Startseite Ultrasound-assisted green biosynthesis of ZnO nanoparticles and their photocatalytic application
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ultrasound-assisted green biosynthesis of ZnO nanoparticles and their photocatalytic application

  • Abualiz Modwi , Abdullah S. Al-Ayed , Damra E. Mustafa , Abdulaziz A. Bagabas ORCID logo EMAIL logo , M. R. Elamin , Faisal K. Algethami , Rasheed Arasheed , Mohammed Q. Alfaifi , Ali Alqarni , Fayez Alotaibi und Kamal K. Taha EMAIL logo
Veröffentlicht/Copyright: 19. März 2021

Abstract

Employing plant extracts to obtain nanomaterials is an ecofriendly and highly appreciated synthetic approach. In this work a simple, green chemistry method, based on sol–gel, was used for ZnO nanoparticles synthesis by using two Sudanese medicinal plant extracts: Adanosia digitata (ZnO-A) and Balanites aegyptiaca (ZnO-B) under ultrasonic energy. The X-ray diffraction (XRD) revealed the formation of wurtzite hexagonal ZnO nanostructures, while the scanning electron microscopy (SEM) analysis displayed their diverse morphologies. The X-ray photoelectron spectroscopy (XPS) data showed the impact of extract via the variation in of the O1s and Zn2p3/2 and Zn2p1/2 orbitals binding energy of Zn–O. The UV-visible investigation indicated a variation of bandgap energy (Eg), where the ZnO nanoparticles displayed the lowest Eg. The synthesized nanomaterials have exhibited high photocatalytic efficiency towards the methylene blue (MB) dye. The findings revealed the possibility of obtaining nanoparticles with tailored properties by using plants extracts.


Corresponding authors: Kamal K. Taha, Chem. & Ind. Chem. Dept., College of Sci., University of Bahri, P. O. Box 12327 11111, Khartoum, Sudan; and Abdulaziz A. Bagabas, National Petrochemical Technology Center (NPTC), Materials Science Research Institute (MSRI), King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia, E-mail: (K. K. Taha), and abagabas@hotmail.com (A. A. Bagabas)

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors of the manuscript declare no conflicts of interest.

References

[1] S. Utamapanya, K. J. Klabunde, and J. R. Schlup, “Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide,” Chem. Mater., vol. 3, no. 1, pp. 175–181, 1991.10.1021/cm00013a036Suche in Google Scholar

[2] Y. Jiang, S. Decker, C. Mohs, and K. J. Klanude, “Catalytic solid state reactions on the surface of nanoscale metal oxide particles,” J. Catal., vol. 180, no. 1, pp. 24–35, 1998.10.1006/jcat.1998.2257Suche in Google Scholar

[3] B. D. Johnston, T. M. Scown, J. Moger, “Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish,” Environ. Sci. Technol., vol. 44, no. 3, pp. 1144–1151, 2010.10.1021/es901971aSuche in Google Scholar PubMed

[4] Y. Hwangbo and Y.-I. Lee, “Facile synthesis of zirconia nanoparticles using a salt-assisted ultrasonic spray pyrolysis combined with a citrate precursor method,” J. Alloys Compd., vol. 771, pp. 821–826, 2019.10.1016/j.jallcom.2018.08.308Suche in Google Scholar

[5] L. Gou and C. J. Murphy, “Solution-phase synthesis of Cu2O nanocubes,” Nano Lett., vol. 3, no. 2, pp. 231–234, 2003.10.1021/nl0258776Suche in Google Scholar

[6] B. Wang, J. He, F. Liu, and L. Ding, “Rapid synthesis of Cu2O/CuO/rGO with enhanced sensitivity for ascorbic acid biosensing,” J. Alloys Compd., vol. 693, pp. 902–908, 2017.10.1016/j.jallcom.2016.09.291Suche in Google Scholar

[7] L. de Lima, E. L. Brito, R. B. da Silva, et al., “Magnetic behavior in CoFe2-CoFe2O4 nanocomposites obtained from colloidal synthesis using chitosan and borohydride reduction,” J. Magn. Magn Mater., vol. 444, pp. 378–382, 2017.10.1016/j.jmmm.2017.08.045Suche in Google Scholar

[8] P. Raveendran, J. Fu, and S. L. Wallen, “Completely “green” synthesis and stabilization of metal nanoparticles,” J. Am. Chem. Soc., vol. 125, no. 46, pp. 13940–13941, 2003.10.1021/ja029267jSuche in Google Scholar PubMed

[9] C. Rao, et al., “Size-dependent chemistry: properties of nanocrystals,” in Advances In Chemistry: A Selection of CNR Rao's Publications (1994–2003), J. Gopalakrishnan and G. U. Kulkarni, Eds., World Scientific, 2003, pp. 227–233.10.1142/9789812835734_0021Suche in Google Scholar

[10]. M. V. Fathabadi, H. H. Rafsanjani, M. M. Foroughi, S. Jahani, and N. R. Nia, “Synthesis of magnetic ordered mesoporous carbons (OMC) as an electrochemical platform for ultrasensitive and simultaneous detection of thebaine and papaverine,” J. Electrochem. Soc., vol. 167, no. 2, 2020, Art no. 027509.10.1149/1945-7111/ab6446Suche in Google Scholar

[11] A. K. Jha and K. Prasad, “Green synthesis of silver nanoparticles using Cycas leaf,” Int. J. Green Nanotechnol. Phys. Chem., vol. 1, no. 2, pp. P110–P117, 2010.10.1080/19430871003684572Suche in Google Scholar

[12] A. K. Jha, K. Prasad, K. Prasad, and A. R. Kulkarn, “Plant system: nature’s nanofactory,” Colloids Surf. B Biointerfaces, vol. 73, no. 2, pp. 219–223, 2009.10.1016/j.colsurfb.2009.05.018Suche in Google Scholar PubMed

[13] N. C. Sharma, S. V. Sahi, S. Nath, J. G. Parsons, J. L. Gardea- Torresde, and T. Pal, “Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials,” Environ. Sci. Technol., vol. 41, no. 14, pp. 5137–5142, 2007.10.1021/es062929aSuche in Google Scholar PubMed PubMed Central

[14] N. A. Bakar, J. Ismail, and M. A. Bakar, “Synthesis and characterization of silver nanoparticles in natural rubber,” Mater. Chem. Phys., vol. 104, nos. 2–3, pp. 276–283, 2007.10.1016/j.matchemphys.2007.03.015Suche in Google Scholar

[15] N. Vigneshwaran, R. P. Nachane, R. H. Balasubramanya, and P. V. Varadarajan, “A novel one-pot ‘green’synthesis of stable silver nanoparticles using soluble starch,” Carbohydr. Res., vol. 341, no. 12, pp. 2012–2018, 2006.10.1016/j.carres.2006.04.042Suche in Google Scholar PubMed

[16] S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, “Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract,” Biotechnol. Prog., vol. 22, no. 2, pp. 577–583, 2006.10.1021/bp0501423Suche in Google Scholar PubMed

[17] H. Agarwal, S. Kumar, and S. Rajeshkumar, “A review on green synthesis of zinc oxide nanoparticles: an eco-friendly approach,” Resour. Effic. Technol., vol. 3, no. 4, pp. 406–413, 2017.10.1016/j.reffit.2017.03.002Suche in Google Scholar

[18] N. Singh and F. Z. Haque, “Synthesis of zinc oxide nanoparticles with different pH by aqueous solution growth technique,” Optik, vol. 127, no. 1, pp. 174–177, 2016.10.1016/j.ijleo.2015.09.024Suche in Google Scholar

[19] R. H. Ahmed and D. E. Mustafa, “Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan,” Int. Nano Lett., vol. 10, pp. 1–14, 2019.10.1007/s40089-019-00291-9Suche in Google Scholar

[20] M. Gupta, R. S. Tomar, S. Kaushik, R. K. Mishra, and D. Sharma, “Effective antimicrobial activity of green ZnO nano particles of Catharanthus roseus,” Front. Microbiol., vol. 9, p. 2030, 2018.10.3389/fmicb.2018.02030Suche in Google Scholar PubMed PubMed Central

[21] K. K. Taha, M. Al Zoman, M. Al Outeibi, S. Alhussain, A. Modwi, and A. A. Bagabas, “Green and sonogreen synthesis of zinc oxide nanoparticles for the photocatalytic degradation of methylene blue in water,” Nanotechnol. Environ. Eng., vol. 4, no. 1, p. 10, 2019.10.1007/s41204-019-0057-3Suche in Google Scholar

[22] C. Soto-Robles, P. A. Luque, C. M. Gomez-Gutierriz, et al., “Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles,” Results Phys., vol. 15, p. 102807, 2019.10.1016/j.rinp.2019.102807Suche in Google Scholar

[23] J. Rahul, M. K. Jian, S. P. Singh, et al., “Adansonia digitata L.(baobab): a review of traditional information and taxonomic description,” Asian Pac. J. Trop. Biomed., vol. 5, no. 1, pp. 79–84, 2015.10.1016/S2221-1691(15)30174-XSuche in Google Scholar

[24] D. L. Chothani and H. Vaghasiya, “A review on Balanites aegyptiaca Del (desert date): phytochemical constituents, traditional uses, and pharmacological activity,” Phcog. Rev., vol. 5, no. 9, p. 55, 2011.10.4103/0973-7847.79100Suche in Google Scholar

[25] B. C. Lippens and J. De Boer, “Studies on pore systems in catalysts: V. The t method,” J. Catal., vol. 4, no. 3, pp. 319–323, 1965.10.1016/0021-9517(65)90307-6Suche in Google Scholar

[26] K. K. Taha, A. Modwi, M. R. Elamin, et al., “Impact of Hibiscus extract on the structural and activity of sonochemically fabricated ZnO nanoparticles,” J. Photochem. Photobiol. Chem., vol. 390, p. 112263, 2020.10.1016/j.jphotochem.2019.112263Suche in Google Scholar

[27] T. Munawar, S. Yasmeen, M. Hassan, et al., “Novel tri-phase heterostructured ZnO–Yb2O3–Pr2O3 nanocomposite; structural, optical, photocatalytic and antibacterial studies,” Ceram. Int., vol. 46, no. 8, 2020.10.1016/j.ceramint.2020.01.130Suche in Google Scholar

[28] P. Swarthmore, Powder Diffraction File, Joint Committee on Powder Diffraction Standards, International Center for Diffraction Data, Birmingham, England. Card, 1972, pp. 3–0226.Suche in Google Scholar

[29] M. M. Foroughi and M. Ranjbar, “Microwave-assisted synthesis and characterization photoluminescence properties: a fast, efficient route to produce ZnO/GrO nanocrystalline,” J. Mater. Sci. Mater. Electron., vol. 28, no. 2, pp. 1359–1363, 2017.10.1007/s10854-016-5668-xSuche in Google Scholar

[30] N. A. Nia, M. M. Foroughi, and S. Jahani, “Simultaneous determination of theobromine, theophylline, and caffeine using a modified electrode with petal-like MnO2 nanostructure,” Talanta, vol. 222, p. 121563, 2021.10.1016/j.talanta.2020.121563Suche in Google Scholar PubMed

[31] C. S. Barrett, Structure of Metals, New York, McGraw-Hill Book Company, Inc., 1943.Suche in Google Scholar

[32] A. Modwi, K. M. M. Ali, K. K. Taha, et al., “Structural and optical characteristic of chalcone doped ZnO nanoparticles,” J. Mater. Sci. Mater. Electron., vol. 29, no. 4, pp. 2791–2796, 2018.10.1007/s10854-017-8207-5Suche in Google Scholar

[33] V. Mote, Y. Purushotham, and B. Dole, “Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles,” J. Theor. Appl. Phys., vol. 6, no. 1, p. 6, 2012.10.1186/2251-7235-6-6Suche in Google Scholar

[34] K. Karthika and K. Ravichandran, “Tuning the microstructural and magnetic properties of ZnO nanopowders through the simultaneous doping of Mn and Ni for biomedical applications,” J. Mater. Sci. Technol., vol. 31, no. 11, pp. 1111–1117, 2015.10.1016/j.jmst.2015.09.001Suche in Google Scholar

[35] Y. Vidya and K. S. Anantharaju, “Combustion synthesized tetragonal ZrO2: Eu3+ nanophosphors: structural and photoluminescence studies,” Spectrochim. Acta Mol. Biomol. Spectrosc., vol. 135, pp. 241–251, 2015.10.1016/j.saa.2014.06.151Suche in Google Scholar PubMed

[36] O. Lupan, T. Pauporte ́, L. Chow, et al., “Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium,” Appl. Surf. Sci., vol. 256, no. 6, pp. 1895–1907, 2010.10.1016/j.apsusc.2009.10.032Suche in Google Scholar

[37] G. Zatryb, J. Misiewicz, P. R. J. Wilson, J. Wojcik, P. Mascher, and A. Podhorodecki, “Stress transition from compressive to tensile for silicon nanocrystals embedded in amorphous silica matrix,” Thin Solid Films, vol. 571, pp. 18–22, 2014.10.1016/j.tsf.2014.09.046Suche in Google Scholar

[38] A. Modwi, L. Khezami, K. K. Taha, and A. Houas, “Structural, surface area and FTIR characterization of Zn0.95−xCu0.05 Fe0.0xO nanocomposites prepared via sol–gel method,” J. Mater. Sci. Mater. Electron., vol. 29, no. 3, pp. 2184–2192, 2018.10.1007/s10854-017-8131-8Suche in Google Scholar

[39] A. Modwi, L. Khezami, K. K. Taha, and A. Houas, “Influence of annealing temperature on the properties of ZnO synthesized via 2.3. dihydroxysuccinic acid using flash sol-gel method,” J. Ovonic Res., vol. 12, no. 2, pp. 59–66, 2016.Suche in Google Scholar

[40] K. Taha, M. M’hamed, and H. Idriss, “Mechanical fabrication and characterization of zinc oxide (ZnO) nanoparticles,” J. Ovonic Res., vol. 11, no. 6, pp. 271–276, 2015.Suche in Google Scholar

[41] P. Vanathi, P. Rajiv, S. Narendhran, et al., “Biosynthesis and characterization of phyto mediated zinc oxide nanoparticles: a green chemistry approach,” Mater. Lett., vol. 134, pp. 13–15, 2014.10.1016/j.matlet.2014.07.029Suche in Google Scholar

[42] S. Yakout, “Pure and Gd-based Li, Na, Mn or Fe codoped ZnO nanoparticles: insights into the magnetic and photocatalytic properties,” Solid State Sci., vol. 83, pp. 207–217, 2018.10.1016/j.solidstatesciences.2018.07.020Suche in Google Scholar

[43] M. Krunks, T. Dedova, and I. O. Açik, “Spray pyrolysis deposition of zinc oxide nanostructured layers,” Thin Solid Films, vol. 515, no. 3, pp. 1157–1160, 2006.10.1016/j.tsf.2006.07.134Suche in Google Scholar

[44] A. Modwi, M. A. Abbo, E. A. Hassan, and A. Houas, “Effect of annealing on physicochemical and photocatalytic activity of Cu 5% loading on ZnO synthesized by sol–gel method,” J. Mater. Sci. Mater. Electron., vol. 27, no. 12, pp. 12974–12984, 2016.10.1007/s10854-016-5436-ySuche in Google Scholar

[45] M. Humayun, A. Zada, Z. Li, et al., “Enhanced visible-light activities of porous BiFeO3 by coupling with nanocrystalline TiO2 and mechanism,” Appl. Catal. B Environ., vol. 180, pp. 219–226, 2016.10.1016/j.apcatb.2015.06.035Suche in Google Scholar

[46] S. J. Chen, W. G. Li, C. K. Ruan, K. Sagoe-Crentsil, and W. H. Duan, “Pore shape analysis using centrifuge driven metal intrusion: indication on porosimetry equations, hydration and packing,” Construct. Build. Mater., vol. 154, pp. 95–104, 2017.10.1016/j.conbuildmat.2017.07.190Suche in Google Scholar

[47] M. R. Kim, S.-Y. Park, and D.-J. Jang, “Composition variation and thermal treatment of Zn x Cd1− x S alloy nanoparticles to exhibit controlled and efficient luminescence,” J. Phys. Chem. C, vol. 114, no. 14, pp. 6452–6457, 2010.10.1021/jp100834fSuche in Google Scholar

[48] I. G. Morozov, O. V. Belousova, D. Ortega, M.-K. Mafina, and M. V. Kuznetcov, “Structural, optical, XPS and magnetic properties of Zn particles capped by ZnO nanoparticles,” J. Alloys Compd., vol. 633, pp. 237–245, 2015.10.1016/j.jallcom.2015.01.285Suche in Google Scholar

[49] Z. Wang, H. Zhang, L. Zhang, J. Yuan, S. Yan, and C. Wang, “Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction,” Nanotechnology, vol. 14, no. 1, p. 11, 2002.10.1088/0957-4484/14/1/303Suche in Google Scholar

[50] R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet, and Y. Al-Douri, “XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods,” Ceram. Int., vol. 39, no. 3, pp. 2283–2292, 2013.10.1016/j.ceramint.2012.08.075Suche in Google Scholar

[51] R. Shi, P. Yang, X. Dong, Q. Ma, and A. Zhang, “Growth of flower-like ZnO on ZnO nanorod arrays created on zinc substrate through low-temperature hydrothermal synthesis,” Appl. Surf. Sci., vol. 264, pp. 162–170, 2013.10.1016/j.apsusc.2012.09.164Suche in Google Scholar

[52] E. M. Abdallah, A. B. Hsouna, and K. S. Al-Khalifa, “Antimicrobial, antioxidant and phytochemical investigation of Balanites aegyptiaca (L.) Del. edible fruit from Sudan,” Afr. J. Biotechnol., vol. 11, no. 52, pp. 11535–11542, 2012.10.5897/AJB12.1102Suche in Google Scholar

[53] M. E. Eltahir and M. E. Elsayed, “Adansonia digitata: phytochemical constituents, bioactive compounds, traditional and medicinal uses,” in Wild Fruits: Composition, Nutritional Value and Products, A. Adam Mariod, Ed., Springer, 2019, pp. 133–142.10.1007/978-3-030-31885-7_11Suche in Google Scholar

[54] M. Sundarambal, P. Muthusamy, and R. Radha, “A review on Adansonia digitata Linn,” J. Pharmacogn. Phytochem., vol. 4, no. 4, p. 12, 2015.Suche in Google Scholar

[55] M. Bindhu and M. Umadevi, “Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity,” Spectrochim. Acta Mol. Biomol. Spectrosc., vol. 101, pp. 184–190, 2013.10.1016/j.saa.2012.09.031Suche in Google Scholar PubMed

[56] N. Sahu, D. Soni, and B. Chandrashekhar, “Synthesis of silver nanoparticles using flavonoids: hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity,” Int. Nano Lett., vol. 6, no. 3, pp. 173–181, 2016.10.1007/s40089-016-0184-9Suche in Google Scholar

[57] M. Khatami, S. Pourseyedi, K. Khatami, H. Hamidi, M. Zaeifi, and L. Soltani, “Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity,” Bioresour. Bioprocess., vol. 2, no. 1, p. 19, 2015.10.1186/s40643-015-0043-ySuche in Google Scholar

[58] M. A. Kumar, C. R. Ravikumar, H. P. Nagaswarupa, et al., “Evaluation of bi-functional applications of ZnO nanoparticles prepared by green and chemical methods,” J. Environ. Chem. Eng., vol. 7, no. 6, p. 103468, 2019.10.1016/j.jece.2019.103468Suche in Google Scholar

[59] M. E. Karlsson, C. M. Yann, C. Andrea, et al., “Synthesis of zinc oxide nanorods via the formation of sea urchin structures and their photoluminescence after heat treatment,” Langmuir, vol. 34, no. 17, pp. 5079–5087, 2018.10.1021/acs.langmuir.8b01101Suche in Google Scholar

[60] J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull., vol. 3, no. 1, pp. 37–46, 1968.10.1016/0025-5408(68)90023-8Suche in Google Scholar

[61] N. J. Ridha, M. H. Haji Jumali, A. A. Umar, and F. Alosfur, “Defects-controlled ZnO nanorods with high aspect ratio for ethanol detection,” Int. J. Electrochem. Sci., vol. 8, pp. 4583–4594, 2013.10.1016/S1452-3981(23)14624-4Suche in Google Scholar

[62] S. Kappadan, T. G. Gebreab, S. Thomas, and N. Kalarikkal, “Tetragonal BaTiO3 nanoparticles: an efficient photocatalyst for the degradation of organic pollutants,” Mater. Sci. Semicond. Process., vol. 51, pp. 42–47, 2016.10.1016/j.mssp.2016.04.019Suche in Google Scholar

[63] D. Thatikayala, N. Jayarambabu, V. Banothu, C. B. Ballipalli, J. Park, and K. V Rao, “Biogenic synthesis of silver nanoparticles mediated by Theobroma cacao extract: enhanced antibacterial and photocatalytic activities,” J. Mater. Sci. Mater. Electron., vol. 30, no. 18, pp. 17303–17313, 2019.10.1007/s10854-019-02077-3Suche in Google Scholar

[64] M. T. Islam and H. Jing, “Fullerene stabilized gold nanoparticles supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol,” J. Environ. Chem. Eng., vol. 6, no. 4, pp. 3827–3836, 2018.10.1016/j.jece.2018.05.032Suche in Google Scholar

[65] K. Sopajaree, S. A. Qasim, S. Basak, and K. Rajrshwar, “An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part I: experiments and modelling of a batch-recirculated photoreactor,” J. Appl. Electrochem., vol. 29, no. 5, pp. 533–539, 1999.10.1023/A:1026418208733Suche in Google Scholar

[66] A. R. Upreti, Y. Li, N. Khadgi, S. Naraginti, and C. Zhang, “Efficient visible light photocatalytic degradation of 17α-ethinyl estradiol by a multifunctional Ag–AgCl/ZnFe2O4 magnetic nanocomposite,” RSC Adv., vol. 6, no. 39, pp. 32761–32769, 2016.10.1039/C6RA00707DSuche in Google Scholar

[67] J. Wang, H. Shen, X. Dai, C. Li, W. Shi, and Y. Yan, “Graphene oxide as solid-state electron mediator enhanced photocatalytic activities of GO-Ag3PO4/Bi2O3 Z-scheme photocatalyst efficiently by visible-light driven,” Mater. Technol., vol. 33, no. 6, pp. 421–432, 2018.10.1080/10667857.2018.1455385Suche in Google Scholar

[68] G. Wu and W. Xing, “Fabrication of ternary visible-light-driven semiconductor photocatalyst and its effective photocatalytic performance,” Mater. Technol., vol. 34, no. 5, pp. 1–9, 2018.10.1080/10667857.2018.1553267Suche in Google Scholar

[69] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J.-M. Herrmann, “Photocatalytic degradation pathway of methylene blue in water,” Appl. Catal. B Environ., vol. 31, no. 2, pp. 145–157, 2001.10.1016/S0926-3373(00)00276-9Suche in Google Scholar

[70] R. Saravanan, V. K. Gupta, E. Mosquera, and F. Gracia, “Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application,” J. Mol. Liq., vol. 198, pp. 409–412, 2014.10.1016/j.molliq.2014.07.030Suche in Google Scholar

[71] D. Hidalgo, S. Bocchini, M. Fontana, G. Saracco, and S. Hernández, “Green and low-cost synthesis of PANI–TiO2 nanocomposite mesoporous films for photoelectrochemical water splitting,” RSC Adv., vol. 5, no. 61, pp. 49429–49438, 2015.10.1039/C5RA06734KSuche in Google Scholar

[72] X. Fu, S. Bocchini, M. Fontana, G. Saracco, and S. Hernández, “V2O5/Al2O3 composite photocatalyst: preparation, characterization, and the role of Al2O3,” Chem. Eng. J., vol. 180, pp. 170–177, 2012.10.1016/j.cej.2011.11.032Suche in Google Scholar

[73] Z. Li, A. Xie, Y. Zhang, L. Wu, X. Wang, and X. Fu, “Wide band gap p-block metal oxyhydroxide InOOH: a new durable photocatalyst for benzene degradation,” J. Phys. Chem. C, vol. 111, no. 49, pp. 18348–18352, 2007.10.1021/jp076107rSuche in Google Scholar

[74] S. Talukdar and R. K. Dutta, “A mechanistic approach for superoxide radicals and singlet oxygen mediated enhanced photocatalytic dye degradation by selenium doped ZnS nanoparticles,” RSC Adv., vol. 6, no. 2, pp. 928–936, 2016.10.1039/C5RA17940HSuche in Google Scholar

[75] W. Liu, M. Wang, C. Xu, and S. Chen, “Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties,” Chem. Eng. J., vol. 209, pp. 386–393, 2012.10.1016/j.cej.2012.08.033Suche in Google Scholar

[76] J. T. Adeleke, Theivasanthi, M. Thiruppathi, M. Swaminathan, T. Akomolafe, and A. B. Alabi, “Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles,” Appl. Surf. Sci., 2018.10.1016/j.apsusc.2018.05.184Suche in Google Scholar

[77] T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, and N. Serpone, “Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation,” J. Photochem. Photobiol. Chem., vol. 140, no. 2, pp. 163–172, 2001.10.1016/S1010-6030(01)00398-7Suche in Google Scholar

[78] Y.-H. Xu, D.-H. Liang, and D.-Z. Liu, “Preparation and characterization of Cu2O–TiO2: efficient photocatalytic degradation of methylene blue,” Mater. Res. Bull., vol. 43, no. 12, pp. 3474–3482, 2008.10.1016/j.materresbull.2008.01.026Suche in Google Scholar

[79] H.-P. Jing, C.-C. Wang, Y.-W. Zhang, P. Wang, and R. Li, “Photocatalytic degradation of methylene blue in ZIF-8,” RSC Adv., vol. 4, no. 97, pp. 54454–54462, 2014.10.1039/C4RA08820DSuche in Google Scholar

[80] D. D. Mishra and G. Tan, “Visible photocatalytic degradation of methylene blue on magnetic SrFe12O19,” J. Phys. Chem. Solid., vol. 123, pp. 157–161, 2018.10.1016/j.jpcs.2018.07.018Suche in Google Scholar

[81] V. Eskizeybek, F. Sarıb, H. Gülceb, A. Gülceb, and A. Avc, “Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations,” Appl. Catal. B Environ., vol. 119, pp. 197–206, 2012.10.1016/j.apcatb.2012.02.034Suche in Google Scholar

Received: 2021-01-09
Accepted: 2021-02-21
Published Online: 2021-03-19
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0009/html
Button zum nach oben scrollen