Plagioclase feldspars (Ca1-x Na x )(Al2-x Si2+x )O8: synthesis and characterizations of mechanical weathering relevant to Martian regolith
Abstract
Plagioclase feldspars draw intensive research attention in planetary sciences because of their abundance in the Martian regolith. Crystal chemical studies on plagioclase feldspars would be of crucial importance for possible in situ resource utilization for future human settlement on Mars. This study focuses on the synthesis of representative plagioclase feldspars followed by simulation of mechanical weathering using ball milling. A series of (Ca1-x Na x )(Al2-x Si2+x )O8 plagioclase feldspars is synthesized perfoming the solid-state method, where the endmembers are the anorthite (CaAl2Si2O8) and albite (NaAlSi3O8). The bulk chemical composition, particularly the Al/Si ratio, of each member is determined from energy-dispersive X-ray spectroscopy, which is supported by X-ray powder diffraction data Rietveld refinements. Selective plagioclase members (x = 0.0, 0.4 and 1.0) are mechanically weathered using high-energy ball milling, leading to significant changes of microstructural features such as average crystallite size and micro-strain. Total scattering data are collected using in-house X-ray facilities and analyzed by pair distribution function refinements. The vibrational modes of the samples are evaluated by Raman spectroscopy, complementing the local structural description.
Acknowledgments
We acknowledge support by the state of Bremen within the “Humans on Mars” initiative for APF “Materials on demand” S1P3.
-
Research ethics: The local Institutional Review Board deemed the study exempt from review.
-
Informed consent: Informed consent was obtained from all individuals included in this study.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interests: The authors hereby state no conflict of interest.
-
Research funding: State of Bremen within the “Humans on Mars” initiative for APF “Materials on demand” S1P3.
-
Data availability: Data are available and can be provided on request.
References
1. Milam, K. A.; McSweenJr.H. Y.; Moersch, J.; Christensen, P. R. Distribution and Variation of Plagioclase Compositions on Mars. J. Geophys. Res. Planets 2010, 115 (E9). https://doi.org/10.1029/2009JE003495.Search in Google Scholar
2. Rogers, A. D.; Nekvasil, H. Feldspathic Rocks on Mars: Compositional Constraints from Infrared Spectroscopy and Possible Formation Mechanisms. Geophys. Res. Lett. 2015, 42 (8), 2619–2626. https://doi.org/10.1002/2015GL063501.Search in Google Scholar
3. Flahaut, J.; Payet, V.; Fueten, F.; Guitreau, M.; Barthez, M.; Ito, G.; Allemand, P. New Detections of Feldspar‐Bearing Volcanic Rocks in the Walls of Valles Marineris, Mars. Geophys. Res. Lett. 2023, 50 (2). https://doi.org/10.1029/2022GL100772.Search in Google Scholar
4. Barthez, M.; Flahaut, J.; Guitreau, M.; Ito, G.; Pik, R. Understanding VNIR Plagioclase Signatures on Mars through Petrographic, Geochemical, and Spectral Characterization of Terrestrial Feldspar-Bearing Igneous Rocks. J. Geophys. Res. Planets 2023, 128 (8). https://doi.org/10.1029/2022JE007680.Search in Google Scholar
5. Bish, D. L.; Blake, D. F.; Vaniman, D. T.; Chipera, S. J.; Morris, R. V.; Ming, D. W.; Treiman, A. H.; Sarrazin, P.; Morrison, S. M.; Downs, R. T.; Achilles, C. N.; Yen, A. S.; Bristow, T. F.; Crisp, J. A.; Morookian, J. M.; Farmer, J. D.; Rampe, E. B.; Stolper, E. M.; Spanovich, N.; Agard, C.; Verdasca, J. A. A.; Anderson, R.; Anderson, R.; Archer, D.; Armiens-Aparicio, C.; Arvidson, R.; Atlaskin, E.; Atreya, S.; Aubrey, A.; Baker, B.; Baker, M.; Balic-Zunic, T.; Baratoux, D.; Baroukh, J.; Barraclough, B.; Bean, K.; Beegle, L.; Behar, A.; Bell, J.; Bender, S.; Benna, M.; Bentz, J.; Berger, G.; Berger, J.; Berman, D.; Avalos, J. J. B.; Blaney, D.; Blank, J.; Blau, H.; Bleacher, L.; Boehm, E.; Botta, O.; Böttcher, S.; Boucher, T.; Bower, H.; Boyd, N.; Boynton, B.; Breves, E.; Bridges, J.; Bridges, N.; Brinckerhoff, W.; Brinza, D.; Brunet, C.; Brunner, A.; Brunner, W.; Buch, A.; Bullock, M.; Burmeister, S.; Cabane, M.; Calef, F.; Cameron, J.; Campbell, J. I.; Cantor, B.; Caplinger, M.; Rodríguez, J. C.; Carmosino, M.; Blázquez, I. C.; Charpentier, A.; Choi, D.; Clark, B.; Clegg, S.; Cleghorn, T.; Cloutis, E.; Cody, G.; Coll, P.; Conrad, P.; Coscia, D.; Cousin, A.; Cremers, D.; Cros, A.; Cucinotta, F.; d’Uston, C.; Davis, S.; Day, M. K.; Juarez, M. d. l. T.; DeFlores, L.; DeLapp, D.; DeMarines, J.; DesMarais, D.; Dietrich, W.; Dingler, R.; Donny, C.; Downs, B.; Drake, D.; Dromart, G.; Dupont, A.; Duston, B.; Dworkin, J.; Dyar, M. D.; Edgar, L.; Edgett, K.; Edwards, C.; Edwards, L.; Ehlmann, B.; Ehresmann, B.; Eigenbrode, J.; Elliott, B.; Elliott, H.; Ewing, R.; Fabre, C.; Fairén, A.; Farley, K.; Fassett, C.; Favot, L.; Fay, D.; Fedosov, F.; Feldman, J.; Feldman, S.; Fisk, M.; Fitzgibbon, M.; Flesch, G.; Floyd, M.; Flückiger, L.; Forni, O.; Fraeman, A.; Francis, R.; François, P.; Franz, H.; Freissinet, C.; French, K. L.; Frydenvang, J.; Gaboriaud, A.; Gailhanou, M.; Garvin, J.; Gasnault, O.; Geffroy, C.; Gellert, R.; Genzer, M.; Glavin, D.; Godber, A.; Goesmann, F.; Goetz, W.; Golovin, D.; Gómez, F. G.; Gómez-Elvira, J.; Gondet, B.; Gordon, S.; Gorevan, S.; Grant, J.; Griffes, J.; Grinspoon, D.; Grotzinger, J.; Guillemot, P.; Guo, J.; Gupta, S.; Guzewich, S.; Haberle, R.; Halleaux, D.; Hallet, B.; Hamilton, V.; Hardgrove, C.; Harker, D.; Harpold, D.; Harri, A. M.; Harshman, K.; Hassler, D.; Haukka, H.; Hayes, A.; Herkenhoff, K.; Herrera, P.; Hettrich, S.; Heydari, E.; Hipkin, V.; Hoehler, T.; Hollingsworth, J.; Hudgins, J.; Huntress, W.; Hurowitz, J.; Hviid, S.; Iagnemma, K.; Indyk, S.; Israël, G.; Jackson, R.; Jacob, S.; Jakosky, B.; Jensen, E.; Jensen, J. K.; Johnson, J.; Johnson, M.; Johnstone, S.; Jones, A.; Jones, J.; Joseph, J.; Jun, I.; Kah, L.; Kahanpää, H.; Kahre, M.; Karpushkina, N.; Kasprzak, W.; Kauhanen, J.; Keely, L.; Kemppinen, O.; Keymeulen, D.; Kim, M. H.; Kinch, K.; King, P.; Kirkland, L.; Kocurek, G.; Koefoed, A.; Köhler, J.; Kortmann, O.; Kozyrev, A.; Krezoski, J.; Krysak, D.; Kuzmin, R.; Lacour, J. L.; Lafaille, V.; Langevin, Y.; Lanza, N.; Lasue, J.; Le Mouélic, S.; Lee, E. M.; Lee, Q. M.; Lees, D.; Lefavor, M.; Lemmon, M.; Malvitte, A. L.; Leshin, L.; Léveillé, R.; Lewin-Carpintier, É.; Lewis, K.; Li, S.; Lipkaman, L.; Little, C.; Litvak, M.; Lorigny, E.; Lugmair, G.; Lundberg, A.; Lyness, E.; Madsen, M.; Mahaffy, P.; Maki, J.; Malakhov, A.; Malespin, C.; Malin, M.; Mangold, N.; Manhes, G.; Manning, H.; Marchand, G.; Jiménez, M. M.; García, C. M.; Martin, D.; Martin, M.; Martínez-Frías, J.; Martín-Soler, J.; Martín-Torres, F. J.; Mauchien, P.; Maurice, S.; McAdam, A.; McCartney, E.; McConnochie, T.; McCullough, E.; McEwan, I.; McKay, C.; McLennan, S.; McNair, S.; Melikechi, N.; Meslin, P. Y.; Meyer, M.; Mezzacappa, A.; Miller, H.; Miller, K.; Milliken, R.; Minitti, M.; Mischna, M.; Mitrofanov, I.; Moersch, J.; Mokrousov, M.; Jurado, A. M.; Moores, J.; Mora-Sotomayor, L.; Morris, R.; Mueller-Mellin, R.; Muller, J. P.; Caro, G. M.; Nachon, M.; López, S. N.; Navarro-González, R.; Nealson, K.; Nefian, A.; Nelson, T.; Newcombe, M.; Newman, C.; Newsom, H.; Nikiforov, S.; Niles, P.; Nixon, B.; Dobrea, E. N.; Nolan, T.; Oehler, D.; Ollila, A.; Olson, T.; Owen, T.; Hernández, M. Á. D. P.; Paillet, A.; Pallier, E.; Palucis, M.; Parker, T.; Parot, Y.; Patel, K.; Paton, M.; Paulsen, G.; Pavlov, A.; Pavri, B.; Peinado-González, V.; Pepin, R.; Peret, L.; Perez, R.; Perrett, G.; Peterson, J.; Pilorget, C.; Pinet, P.; Pla-García, J.; Plante, I.; Poitrasson, F.; Polkko, J.; Popa, R.; Posiolova, L.; Posner, A.; Pradler, I.; Prats, B.; Prokhorov, V.; Purdy, S. W.; Raaen, E.; Radziemski, L.; Rafkin, S.; Ramos, M.; Raulin, F.; Ravine, M.; Reitz, G.; Rennó, N.; Rice, M.; Richardson, M.; Robert, F.; Robertson, K.; Manfredi, J. A. R.; Romeral-Planelló, J. J.; Rowland, S.; Rubin, D.; Saccoccio, M.; Salamon, A.; Sandoval, J.; Sanin, A.; Fuentes, S. A. S.; Saper, L.; Sautter, V.; Savijärvi, H.; Schieber, J.; Schmidt, M.; Schmidt, W.; Scholes, D. D.; Schoppers, M.; Schröder, S.; Schwenzer, S.; Martinez, E. S.; Sengstacken, A.; Shterts, R.; Siebach, K.; Siili, T.; Simmonds, J.; Sirven, J. B.; Slavney, S.; Sletten, R.; Smith, M.; Sánchez, P. S.; Spray, J.; Squyres, S.; Stack, K.; Stalport, F.; Steele, A.; Stein, T.; Stern, J.; Stewart, N.; Stipp, S. L. S.; Stoiber, K.; Sucharski, B.; Sullivan, R.; Summons, R.; Sumner, D.; Sun, V.; Supulver, K.; Sutter, B.; Szopa, C.; Tan, F.; Tate, C.; Teinturier, S.; ten Kate, I.; Thomas, P.; Thompson, L.; Tokar, R.; Toplis, M.; Redondo, J. T.; Trainer, M.; Tretyakov, V.; Urqui-O’Callaghan, R.; Van Beek, J.; Van Beek, T.; VanBommel, S.; Varenikov, A.; Vasavada, A.; Vasconcelos, P.; Vicenzi, E.; Vostrukhin, A.; Voytek, M.; Wadhwa, M.; Ward, J.; Webster, C.; Weigle, E.; Wellington, D.; Westall, F.; Wiens, R. C.; Wilhelm, M. B.; Williams, A.; Williams, J.; Williams, R.; Williams, R. B. M.; Wilson, M.; Wimmer-Schweingruber, R.; Wolff, M.; Wong, M.; Wray, J.; Wu, M.; Yana, C.; Yingst, A.; Zeitlin, C.; Zimdar, R.; Mier, M. P. Z. X-Ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater. Science 2013, 341 (6153). https://doi.org/10.1126/science.1238932.Search in Google Scholar PubMed
6. Achilles, C. N.; Downs, R. T.; Ming, D. W.; Rampe, E. B.; Morris, R. V.; Treiman, A. H.; Morrison, S. M.; Blake, D. F.; Vaniman, D. T.; Ewing, R. C.; Chipera, S. J.; Yen, A. S.; Bristow, T. F.; Ehlmann, B. L.; Gellert, R.; Hazen, R. M.; Fendrich, K. V.; Craig, P. I.; Grotzinger, J. P.; Des Marais, D. J.; Farmer, J. D.; Sarrazin, P. C.; Morookian, J. M. Mineralogy of an Active Eolian Sediment from the Namib Dune, Gale Crater, Mars. J. Geophys. Res. Planets 2017, 122 (11), 2344–2361. https://doi.org/10.1002/2017je005262.Search in Google Scholar
7. Vaniman, D. T.; Bish, D. L.; Ming, D. W.; Bristow, T. F.; Morris, R. V.; Blake, D. F.; Chipera, S. J.; Morrison, S. M.; Treiman, A. H.; Rampe, E. B.; Rice, M.; Achilles, C. N.; Grotzinger, J. P.; McLennan, S. M.; Williams, J.; Bell, J. F. I.; Newsom, H. E.; Downs, R. T.; Maurice, S.; Sarrazin, P.; Yen, A. S.; Morookian, J. M.; Farmer, J. D.; Stack, K.; Milliken, R. E.; Ehlmann, B. L.; Sumner, D. Y.; Berger, G.; Crisp, J. A.; Hurowitz, J. A.; Anderson, R.; Des Marais, D. J.; Stolper, E. M.; Edgett, K. S.; Gupta, S.; Spanovich, N.; Team, M. S.; Alves Verdasca, J. A.; Archer, D.; Armiens-Aparicio, C.; Arvidson, R.; Atlaskin, E.; Atreya, S.; Aubrey, A.; Baker, B.; Baker, M.; Balic-Zunic, T.; Baratoux, D.; Baroukh, J.; Barraclough, B.; Bean, K.; Beegle, L.; Behar, A.; Bender, S.; Benna, M.; Bentz, J.; Berger, J.; Berman, D.; Blanco Avalos, J. J.; Blaney, D.; Blank, J.; Blau, H.; Bleacher, L.; Boehm, E.; Botta, O.; Böttcher, S.; Boucher, T.; Bower, H.; Boyd, N.; Boynton, B.; Breves, E.; Bridges, J.; Bridges, N.; Brinckerhoff, W.; Brinza, D.; Brunet, C.; Brunner, A.; Brunner, W.; Buch, A.; Bullock, M.; Burmeister, S.; Cabane, M.; Calef, F.; Cameron, J.; Campbell, J. I.; Cantor, B.; Caplinger, M.; Caride Rodríguez, J.; Carmosino, M.; Carrasco Blázquez, I.; Charpentier, A.; Choi, D.; Clark, B.; Clegg, S.; Cleghorn, T.; Cloutis, E.; Cody, G.; Coll, P.; Conrad, P.; Coscia, D.; Cousin, A.; Cremers, D.; Cros, A.; Cucinotta, F.; d’Uston, C.; Davis, S.; Day, M. K.; de la Torre Juarez, M.; DeFlores, L.; DeLapp, D.; DeMarines, J.; Dietrich, W.; Dingler, R.; Donny, C.; Drake, D.; Dromart, G.; Dupont, A.; Duston, B.; Dworkin, J.; Dyar, M. D.; Edgar, L.; Edwards, C.; Edwards, L.; Ehresmann, B.; Eigenbrode, J.; Elliott, B.; Elliott, H.; Ewing, R.; Fabre, C.; Fairén, A.; Farley, K.; Fassett, C.; Favot, L.; Fay, D.; Fedosov, F.; Feldman, J.; Feldman, S.; Fisk, M.; Fitzgibbon, M.; Flesch, G.; Floyd, M.; Flückiger, L.; Forni, O.; Fraeman, A.; Francis, R.; François, P.; Franz, H.; Freissinet, C.; French, K. L.; Frydenvang, J.; Gaboriaud, A.; Gailhanou, M.; Garvin, J.; Gasnault, O.; Geffroy, C.; Gellert, R.; Genzer, M.; Glavin, D.; Godber, A.; Goesmann, F.; Goetz, W.; Golovin, D.; Gómez Gómez, F.; Gómez-Elvira, J.; Gondet, B.; Gordon, S.; Gorevan, S.; Grant, J.; Griffes, J.; Grinspoon, D.; Guillemot, P.; Guo, J.; Guzewich, S.; Haberle, R.; Halleaux, D.; Hallet, B.; Hamilton, V.; Hardgrove, C.; Harker, D.; Harpold, D.; Harri, A. M.; Harshman, K.; Hassler, D.; Haukka, H.; Hayes, A.; Herkenhoff, K.; Herrera, P.; Hettrich, S.; Heydari, E.; Hipkin, V.; Hoehler, T.; Hollingsworth, J.; Hudgins, J.; Huntress, W.; Hviid, S.; Iagnemma, K.; Indyk, S.; Israël, G.; Jackson, R.; Jacob, S.; Jakosky, B.; Jensen, E.; Jensen, J. K.; Johnson, J.; Johnson, M.; Johnstone, S.; Jones, A.; Jones, J.; Joseph, J.; Jun, I.; Kah, L.; Kahanpää, H.; Kahre, M.; Karpushkina, N.; Kasprzak, W.; Kauhanen, J.; Keely, L.; Kemppinen, O.; Keymeulen, D.; Kim, M. H.; Kinch, K.; King, P.; Kirkland, L.; Kocurek, G.; Koefoed, A.; Köhler, J.; Kortmann, O.; Kozyrev, A.; Krezoski, J.; Krysak, D.; Kuzmin, R.; Lacour, J. L.; Lafaille, V.; Langevin, Y.; Lanza, N.; Lasue, J.; Le Mouélic, S.; Lee, E. M.; Lee, Q. M.; Lees, D.; Lefavor, M.; Lemmon, M.; Malvitte, A. L.; Leshin, L.; Léveillé, R.; Lewin-Carpintier, É.; Lewis, K.; Li, S.; Lipkaman, L.; Little, C.; Litvak, M.; Lorigny, E.; Lugmair, G.; Lundberg, A.; Lyness, E.; Madsen, M.; Mahaffy, P.; Maki, J.; Malakhov, A.; Malespin, C.; Malin, M.; Mangold, N.; Manhes, G.; Manning, H.; Marchand, G.; Marín Jiménez, M.; Martín García, C.; Martin, D.; Martin, M.; Martínez-Frías, J.; Martín-Soler, J.; Martín-Torres, F. J.; Mauchien, P.; McAdam, A.; McCartney, E.; McConnochie, T.; McCullough, E.; McEwan, I.; McKay, C.; McNair, S.; Melikechi, N.; Meslin, P. Y.; Meyer, M.; Mezzacappa, A.; Miller, H.; Miller, K.; Minitti, M.; Mischna, M.; Mitrofanov, I.; Moersch, J.; Mokrousov, M.; Molina Jurado, A.; Moores, J.; Mora-Sotomayor, L.; Mueller-Mellin, R.; Muller, J. P.; Muñoz Caro, G.; Nachon, M.; Navarro López, S.; Navarro-González, R.; Nealson, K.; Nefian, A.; Nelson, T.; Newcombe, M.; Newman, C.; Nikiforov, S.; Niles, P.; Nixon, B.; Noe Dobrea, E.; Nolan, T.; Oehler, D.; Ollila, A.; Olson, T.; Owen, T.; de Pablo Hernández, M. Á.; Paillet, A.; Pallier, E.; Palucis, M.; Parker, T.; Parot, Y.; Patel, K.; Paton, M.; Paulsen, G.; Pavlov, A.; Pavri, B.; Peinado-González, V.; Pepin, R.; Peret, L.; Perez, R.; Perrett, G.; Peterson, J.; Pilorget, C.; Pinet, P.; Pla-García, J.; Plante, I.; Poitrasson, F.; Polkko, J.; Popa, R.; Posiolova, L.; Posner, A.; Pradler, I.; Prats, B.; Prokhorov, V.; Purdy, S. W.; Raaen, E.; Radziemski, L.; Rafkin, S.; Ramos, M.; Raulin, F.; Ravine, M.; Reitz, G.; Rennó, N.; Richardson, M.; Robert, F.; Robertson, K.; Rodriguez Manfredi, J. A.; Romeral-Planelló, J. J.; Rowland, S.; Rubin, D.; Saccoccio, M.; Salamon, A.; Sandoval, J.; Sanin, A.; Sans Fuentes, S. A.; Saper, L.; Sautter, V.; Savijärvi, H.; Schieber, J.; Schmidt, M.; Schmidt, W.; Scholes, D. D.; Schoppers, M.; Schröder, S.; Schwenzer, S.; Sebastian Martinez, E.; Sengstacken, A.; Shterts, R.; Siebach, K.; Siili, T.; Simmonds, J.; Sirven, J. B.; Slavney, S.; Sletten, R.; Smith, M.; Sobrón Sánchez, P.; Spray, J.; Squyres, S.; Stalport, F.; Steele, A.; Stein, T.; Stern, J.; Stewart, N.; Stipp, S. L. S.; Stoiber, K.; Sucharski, B.; Sullivan, R.; Summons, R.; Sun, V.; Supulver, K.; Sutter, B.; Szopa, C.; Tan, F.; Tate, C.; Teinturier, S.; ten Kate, I.; Thomas, P.; Thompson, L.; Tokar, R.; Toplis, M.; Torres Redondo, J.; Trainer, M.; Tretyakov, V.; Urqui-O’Callaghan, R.; Van Beek, J.; Van Beek, T.; VanBommel, S.; Varenikov, A.; Vasavada, A.; Vasconcelos, P.; Vicenzi, E.; Vostrukhin, A.; Voytek, M.; Wadhwa, M.; Ward, J.; Webster, C.; Weigle, E.; Wellington, D.; Westall, F.; Wiens, R. C.; Wilhelm, M. B.; Williams, A.; Williams, R.; Williams, R. B. M.; Wilson, M.; Wimmer-Schweingruber, R.; Wolff, M.; Wong, M.; Wray, J.; Wu, M.; Yana, C.; Yingst, A.; Zeitlin, C.; Zimdar, R.; Zorzano Mier, M. P. Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science 2014, 343. https://doi.org/10.1126/science.1243480.Search in Google Scholar PubMed
8. Demidov, N.; Bazilevskii, A.; Kuz’Min, R. Martian Soils: Varieties, Structure, Composition, Physical Properties, Drillability, and Risks for Landers. Sol. Sys. Res. 2015, 49 (4), 209–225. https://doi.org/10.1134/S0038094615040024.Search in Google Scholar
9. Certini, G.; Karunatillake, S.; Zhao, Y. Y. S.; Meslin, P.-Y.; Cousin, A.; Hood, D. R.; Scalenghe, R. Disambiguating the Soils of Mars. Planet. Space Sci. 2020, 186. https://doi.org/10.1016/j.pss.2020.104922.Search in Google Scholar
10. Michalski, J. R.; Niles, P. B. Deep Crustal Carbonate Rocks Exposed by Meteor Impact on Mars. Nat. Geosci. 2010, 3 (11), 751–755. https://doi.org/10.1038/ngeo971.Search in Google Scholar
11. Bland, P. A.; Smith, T. B. Meteorite Accumulations on Mars. Icarus 2000, 144 (1), 21–26. https://doi.org/10.1006/icar.1999.6253.Search in Google Scholar
12. Wentworth, S. J.; Gibson, E. K.; Velbel, M. A.; McKay, D. S. Antarctic Dry Valleys and Indigenous Weathering in Mars Meteorites: Implications for Water and Life on Mars. Icarus 2005, 174 (2), 383–395. https://doi.org/10.1016/j.icarus.2004.08.026.Search in Google Scholar
13. Schwadron, N. A.; Cooper, J. F.; Desai, M.; Downs, C.; Gorby, M.; Jordan, A. P.; Joyce, C. J.; Kozarev, K.; Linker, J. A.; Mikíc, Z.; Riley, P.; Spence, H. E.; Török, T.; Townsend, L. W.; Wilson, J. K.; Zeitlin, C. Particle Radiation Sources, Propagation and Interactions in Deep Space, at Earth, the Moon, Mars, and beyond: Examples of Radiation Interactions and Effects. Space Sci. Rev. 2017, 212 (3), 1069–1106. https://doi.org/10.1007/s11214-017-0381-5.Search in Google Scholar
14. Steele, L. J.; Balme, M. R.; Lewis, S. R.; Spiga, A. The Water Cycle and Regolith–Atmosphere Interaction at Gale Crater, Mars. Icarus 2017, 289, 56–79. https://doi.org/10.1016/j.icarus.2017.02.010.Search in Google Scholar
15. De Angelis, G.; Wilson, J. W.; Clowdsley, M. S.; Qualls, G. D.; Singleterry, R. C. Modeling of the Martian Environment for Radiation Analysis. Radiat. Meas. 2006, 41 (9), 1097–1102. https://doi.org/10.1016/j.radmeas.2006.04.032.Search in Google Scholar
16. Ribbe, P. H. The Crystal Structures of the Aluminum-Silicate Feldspars. In Feldspars and their Reactions; Parsons, I., Ed.; Springer Netherlands, 1994; pp. 1–49.10.1007/978-94-011-1106-5_1Search in Google Scholar
17. Angel, R. High-pressure Structure of Anorthite. Am. Mineral. 1988, 73 (9-10), 1114–1119.Search in Google Scholar
18. Myers, E. R.; Heine, V.; Dove, M. T. Thermodynamics of Al/Al Avoidance in the Ordering of Al/Si Tetrahedral Framework Structures. Phys. Chem. Miner. 1998, 25, 457–464. https://doi.org/10.1007/s002690050136.Search in Google Scholar
19. Vinograd, V. L.; Putnis, A. The Description of Al, Si Ordering in Aluminosilicates Using the Cluster Variation Method. Am. Mineral. 1999, 84 (3), 311–324. https://doi.org/10.2138/am-1999-0314.Search in Google Scholar
20. Vinograd, V. L.; Putnis, A. A Two-Dimensional Spin Model of Al/Si Order in Feldspars: Visualization of Short-Range and Long-Range Order. Eur. J. Mineral. 2001, 13 (2), 273–288. https://doi.org/10.1127/0935-1221/01/0013-0273.Search in Google Scholar
21. Angel, R. J.; Carpenter, M.; Finger, L. Structural Variation Associated with Compositional Variation and Order-Disorder Behavior in Anorthite-Rich Feldspars. Am. Mineral. 1990, 75 (1–2), 150–162.Search in Google Scholar
22. Organova, N.; Marsii, I.; Zakharov, N.; Nasedkin, V.; Borisovskii, S.; Rozhdestvenskaya, I.; Ivanova, T. Structures of the K-And Na-Components of Two-phase Feldspar from Primorskii Krai. Crystallogr. Rep. 1999, 44. https://doi.org/10.1134/1.171098.Search in Google Scholar
23. Kroll, H.; Müller, W. F. X-Ray and Electron-Optical Investigation of Synthetic High-Temperature Plagioclases. Phys. Chem. Miner. 1980, 5, 255–277. https://doi.org/10.1007/BF00348574.Search in Google Scholar
24. Carpenter, M. A.; McConnell, J. D. C. Experimental Delineation of the C 1⇋ I 1 Transformation in Intermediate Plagioclase Feldspars. Am. Mineral. 1984, 69 (1–2), 112–121.Search in Google Scholar
25. Radoslovich, E. W. Feldspar Minerals. In Soil Components: Vol. 2: Inorganic Components; Gieseking, J. E., Ed.; Springer: Berlin, 1975; pp 433–448.10.1007/978-3-642-65917-1_12Search in Google Scholar
26. Peplowski, P. N.; Beck, A. W.; Lawrence, D. J. Geochemistry of the Lunar Highlands as Revealed by Measurements of Thermal Neutrons. J. Geophys. Res. Planets 2016, 121 (3), 388–401. https://doi.org/10.1002/2015JE004950.Search in Google Scholar PubMed PubMed Central
27. Taylor, L. A.; Pieters, C. M.; Britt, D. Evaluations of Lunar Regolith Simulants. Planet. Space Sci. 2016, 126, 1–7. https://doi.org/10.1016/j.pss.2016.04.005.Search in Google Scholar
28. Long-Fox, J. M.; Britt, D. T. Characterization of Planetary Regolith Simulants for the Research and Development of Space Resource Technologies. Front. Space Technol. 2023, 4. https://doi.org/10.3389/frspt.2023.1255535.Search in Google Scholar
29. Angel, R. J. Equations of State of Plagioclase Feldspars. Contrib. Mineral. Petrol. 2004, 146 (4), 506–512. https://doi.org/10.1007/s00410-003-0515-5.Search in Google Scholar
30. Carpenter, M. A.; McConnell, J. D. C.; Navrotsky, A. Enthalpies of Ordering in the Plagioclase Feldspar Solid Solution. Geoch. Cosm. Act 1985, 49 (4), 947–966. https://doi.org/10.1016/0016-7037(85)90310-2.Search in Google Scholar
31. Perez, A.; Daval, D.; Fournier, M.; Vital, M.; Delaye, J.-M.; Gin, S. Comparing the Reactivity of Glasses with Their Crystalline Equivalents: The Case Study of Plagioclase Feldspar. Geoch. Cosm. Act. 2019, 254, 122–141. https://doi.org/10.1016/j.gca.2019.03.030.Search in Google Scholar
32. Flehmig, W. The Synthesis of Feldspars at Temperatures between 0–80 C, Their Ordering Behaviour and Twinning. Contrib. Mineral. Petrol. 1977, 65 (1), 1–9. https://doi.org/10.1007/BF00373564.Search in Google Scholar
33. Lofgren, G. An Experimental Study of Plagioclase Crystal Morphology; Isothermal Crystallization. Am. J. Sci. 1974, 274 (3), 243–273; https://doi.org/10.2475/ajs.274.3.243.Search in Google Scholar
34. Krzmanc, M. M.; Valant, M.; Suvorov, D. A Structural and Dielectric Characterization of NaxCa1−xAl2−xSi2+xO8 (X=0 and 1) Ceramics. J. Eur. Ceram. Soc. 2005, 25 (12), 2835–2838. https://doi.org/10.1016/j.jeurceramsoc.2005.03.151.Search in Google Scholar
35. Krzmanc, M. M.; Valant, M.; Jancar, B.; Suvorov, D. Sub-Solidus Synthesis and Microwave Dielectric Characterization of Plagioclase Feldspars. J. Am. Ceram. Soc. 2005, 88 (9), 2472–2479. https://doi.org/10.1111/j.1551-2916.2005.00461.x.Search in Google Scholar
36. Li, W.; Yue, Z. X.; Zhao, F.; Pei, J.; Li, L. T. Structure and Microwave Properties of NaxCa1-xAl2-xSi2+xO8 (0< X< 0.67) Plagioclase Feldspar. Key Eng. Mater. 2008, 368, 185–187. https://doi.org/10.4028/scientific.net/KEM.368-372.185.Search in Google Scholar
37. Eppes, M.-C. M. Mechanical Weathering: A Conceptual Overview. Treat. Geomorphol. 2022, 3, 30-45. /10.1016/B978-0-12-818234-5.00200-5.10.1016/B978-0-12-818234-5.00200-5Search in Google Scholar
38. López-García, J.; Sánchez-Alarcos, V.; Recarte, V.; Rodríguez-Velamazán, J. A.; Unzueta, I.; García, J.; Plazaola, F.; La Roca, P.; Pérez-Landazábal, J. Effect of High-Energy Ball-Milling on the Magnetostructural Properties of a Ni45Co5Mn35Sn15 Alloy. J. Alloys Compd. 2021, 858. https://doi.org/10.1016/j.jallcom.2020.158350.Search in Google Scholar
39. Ashraf, W.; Khan, A.; Bansal, S.; Khanuja, M. Mechanical Ball Milling: A Sustainable Route to Induce Structural Transformations in Tungsten Disulfide for its Photocatalytic Applications. Phys. E: Low-Dimens. Syst. Nanostruct. 2022, 140. https://doi.org/10.1016/j.physe.2022.115152.Search in Google Scholar
40. Bini, M.; Ferrari, S.; Capsoni, D.; Mustarelli, P.; Spina, G.; Del Giallo, F.; Lantieri, M.; Leonelli, C.; Rizzuti, A.; Massarotti, V. Pair Distribution Function Analysis and Mössbauer Study of Defects in Microwave-Hydrothermal LiFePO4. RSC adv 2012, 2 (1), 250–258. https://doi.org/10.1039/C1RA00525A.Search in Google Scholar
41. Malavasi, L.; Orera, A.; Slater, P. R.; Panchmatia, P. M.; Islam, M. S.; Siewenie, J. Local Structure Investigation of Oxide Ion and Proton Defects in Ge-Apatites by Pair Distribution Function Analysis. Chem. Commun. 2011, 47 (1), 250–252. https://doi.org/10.1039/C0CC00523A.Search in Google Scholar
42. Proffen, T.; Billinge, S.; Egami, T.; Louca, D. Structural Analysis of Complex Materials Using the Atomic Pair Distribution Function–A Practical Guide. Z. Kristallogr. 2003, 218 (2), 132–143. https://doi.org/10.1524/zkri.218.2.132.20664.Search in Google Scholar
43. Szczęśniak, B.; Borysiuk, S.; Choma, J.; Jaroniec, M. Mechanochemical Synthesis of Highly Porous Materials. Mater. Horiz. 2020, 7 (6), 1457–1473. https://doi.org/10.1039/D0MH00081G.Search in Google Scholar
44. Kroll, H.; Ribbe, P. H. Determining (Al, Si) Distribution and Strain in Alkali Feldspars Using Lattice Parameters and Diffraction-Peak Positions; a Review. Am. Mineral. 1987, 72 (5–6), 491–506.Search in Google Scholar
45. Gesing, T. M.; Murshed, M. M.; Schuh, S.; Thüringer, O.; Krämer, K.; Neudecker, T.; Mendive, C. B.; Robben, L. Nano-crystalline Precursor Formation, Stability, and Transformation to Mullite-type Visible-Light Photocatalysts. J. Mater. Sci. 2022, 57, 1–20. https://doi.org/10.1007/s10853-022-07854-w.Search in Google Scholar
46. Gesing, T. M.; Robben, L. Determination of the Average Crystallite Size and the Crystallite Size Distribution: The Envelope Function Approach EnvACS. J. Appl. Crystallogr. 2024, 57. https://doi.org/10.1107/S1600576724007362.Search in Google Scholar PubMed PubMed Central
47. Rietveld, H. M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969, 2 (2), 65–71. https://doi.org/10.1107/S0021889869006558.Search in Google Scholar
48. Juhás, P.; Davis, T.; Farrow, C. L.; Billinge, S. J. PDFgetX3: a Rapid and Highly Automatable Program for Processing Powder Diffraction Data into Total Scattering Pair Distribution Functions. J. Appl. Crystallogr. 2013, 46 (2), 560–566. https://doi.org/10.1107/S0021889813005190.Search in Google Scholar
49. Jin, S.; Xu, H.; Wang, X.; Jacobs, R.; Morgan, D. The Incommensurately Modulated Structures of Low-Temperature Labradorite Feldspars: a Single-Crystal X-Ray and Neutron Diffraction Study. Acta Cryst. B 2020, 76 (1), 93–107. https://doi.org/10.1107/S2052520619017128.Search in Google Scholar PubMed
50. Brown, J. M.; Angel, R. J.; Ross, N. L. Elasticity of Plagioclase Feldspars. J. Geophys. Res. Solid Earth 2016, 121 (2), 663–675. https://doi.org/10.1002/2015JB012736.Search in Google Scholar
51. Tribaudino, M.; Bruno, M.; Nestola, F.; Pasqual, D.; Angel, R. J. Thermoelastic and Thermodynamic Properties of Plagioclase Feldspars from Thermal Expansion Measurements. Am. Mineral. 2011, 96 (7), 992–1002. https://doi.org/10.2138/am.2011.3722.Search in Google Scholar
52. Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. A 1976, 32 (5), 751–767. https://doi.org/10.1107/S0567739476001551.Search in Google Scholar
53. Smith, J. V.; Brown, W. L. Feldspar Minerals; Springer Berlin: Heidelberg, 1988.10.1007/978-3-642-72594-4Search in Google Scholar
54. Prewitt, C.; Sueno, S.; Papike, J. The Crystal Structures of High Albite and Monalbite at High Temperatures. Am. Mineral. 1976, 61 (11–12), 1213–1225.Search in Google Scholar
55. Kroll, H.; Ribbe, P. Lattice Parameters, Composition and Al, Si Order in Alkali Feldspars. Feldspar mineral. 1983, 2, 57–100.10.1515/9781501508547-008Search in Google Scholar
56. Kroll, H.; Ribbe, P. Lattice Parameters and Determinative Methods for Plagioclase and Ternary Feldspars. Mineral. Soc. Am. Rev. 1983, 2, 101–119.10.1515/9781501508547-009Search in Google Scholar
57. Ribbe, P. Aluminum-silicon Order in Feldspars: Domain Textures and Diffraction Patterns. Mineral. Soc. Am. Rev. 1983, 2, 21–55.10.1515/9781501508547-007Search in Google Scholar
58. Robinson, K.; Gibbs, G.; Ribbe, P. Quadratic Elongation: a Quantitative Measure of Distortion in Coordination Polyhedra. Science 1971, 172 (3983), 567–570. https://doi.org/10.1126/science.172.3983.567.Search in Google Scholar PubMed
59. Zhang, Y.; Hu, Y.; Sun, N.; Liu, R.; Wang, Z.; Wang, L.; Sun, W. Systematic Review of Feldspar Beneficiation and its Comprehensive Application. Miner. Eng. 2018, 128, 141–152. https://doi.org/10.1016/j.mineng.2018.08.043.Search in Google Scholar
60. Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Florida, 2007.10.1201/9781420007282Search in Google Scholar
61. Egami, T.; Billinge, S. J. Underneath The Bragg Peaks: Structural Analysis of Complex Materials; Elsevier: Oxford, 2003.10.1016/S1369-7021(03)00635-7Search in Google Scholar
62. Dove, M. T.; Thayaparam, S.; Heine, V.; Hammonds, K. D. The Phenomenon of Low Al-Si Ordering Temperatures in Aluminosilicate Framework Structures. Am. Mineral. 1996, 81 (3–4), 349–362. https://doi.org/10.2138/am-1996-3-409.Search in Google Scholar
63. Bersani, D.; Aliatis, I.; Tribaudino, M.; Mantovani, L.; Benisek, A.; Carpenter, M. A.; Gatta, G. D.; Lottici, P. P. Plagioclase Composition by Raman Spectroscopy. J. Raman Spectrosc. 2018, 49 (4), 684–698. https://doi.org/10.1002/jrs.5340.Search in Google Scholar
64. Freeman, J. J.; Wang, A.; Kuebler, K. E.; Jolliff, B. L.; Haskin, L. A. Characterization of Natural Feldspars by Raman Spectroscopy for Future Planetary Exploration. Can. Mineral. 2008, 46 (6), 1477–1500. https://doi.org/10.3749/canmin.46.6.1477.Search in Google Scholar
65. Xie, T.; Osinski, G. R.; Shieh, S. R. Raman Study of Shock Effects in Lunar Anorthite from the Apollo Missions. Meteorit. Planet. Sci. 2021, 56 (9), 1633–1651. https://doi.org/10.1111/maps.137281633.Search in Google Scholar
66. Bendel, V.; Schmidt, B. C. Raman Spectroscopic Characterisation of Disordered Alkali Feldspars along the Join KAlSi3O8-NaAlSi3O8: Application to Natural Sanidine and Anorthoclase. Eur. J. Mineral. 2008, 20 (6), 1055. https://doi.org/10.1127/0935-1221/2009/0021-1856.Search in Google Scholar
67. Fuertes de la Llave, V.; del Campo, A.; Fernández, J.; Enríquez, E. Structural Insights of Hierarchically Engineered Feldspars by Confocal Raman Microscopy. J. Raman Spectrosc. 2019, 50 (5), 741–754. https://doi.org/10.1002/jrs.5556.Search in Google Scholar
68. Xie, T.; Osinski, G. R.; Shieh, S. R. Raman Study of Shock Features in Plagioclase Feldspar from the Mistastin Lake Impact Structure, Canada. Meteorit. Planet. Sci. 2020, 55 (7), 1471–1490. https://doi.org/10.1111/maps.13523.Search in Google Scholar
69. De Laeter, J. R.; Böhlke, J. K.; De Bievre, P.; Hidaka, H.; Peiser, H.; Rosman, K.; Taylor, P. Atomic Weights of the Elements. Review 2000 (IUPAC Technical Report). Pure Appl. Chem. 2003, 75 (6), 683–800. https://doi.org/10.1351/pac200375060683.Search in Google Scholar
70. Sharma, S. K.; Simons, B.; Yoder, H. Raman Study of Anorthite, Calcium Tschermak’s Pyroxene, and Gehlenite in Crystalline and Glassy States. Am. Mineral. 1983, 68 (11–12), 1113–1125.Search in Google Scholar
71. Islam, N.; Pradhan, A.; Kumar, S. Effects of Crystallite Size Distribution on the Raman-Scattering Profiles of Silicon Nanostructures. J. Appl. Phys. 2005, 98, 024309. https://doi.org/10.1063/1.1980537.Search in Google Scholar
72. Swamy, V.; Muddle, B. C.; Dai, Q. Size-dependent Modifications of the Raman Spectrum of Rutile TiO2. Appl. Phys. Lett. 2006, 89 (16). https://doi.org/10.1063/1.2364123.Search in Google Scholar
73. Gouadec, G.; Colomban, P. Raman Spectroscopy of Nanomaterials: How Spectra Relate to Disorder, Particle Size and Mechanical Properties. Prog. Cryst. Growth Charact. Mater. 2007, 53 (1), 1–56. https://doi.org/10.1016/j.pcrysgrow.2007.01.001.Search in Google Scholar
74. Demtröder, W. Laser Spectroscopy; Springer Berlin: Heidelberg, 2008.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zkri-2024-0117).
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- SrAl8Rh2 – the first phase in the Sr/Al/Rh system and new representative of the CeAl8Fe2 type structure
- Plagioclase feldspars (Ca1-x Na x )(Al2-x Si2+x )O8: synthesis and characterizations of mechanical weathering relevant to Martian regolith
- Thermal evolution of soddyite, (UO2)2SiO4(H2O)2 and structurally related Na2(UO2)2SiO4F2
- Synthesis and crystallographic characterization of Cu[SeCN]
- Organic and Metalorganic Crystal Structures (Original Paper)
- Synthesis, structure and fluorescence of a novel zinc(II) polymer based on N-[(3-pyridine)-3-sulfonyl]-threonine
- Crystallographic Computing (Original Paper)
- How many symmetry operations are needed to generate a space group?
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- SrAl8Rh2 – the first phase in the Sr/Al/Rh system and new representative of the CeAl8Fe2 type structure
- Plagioclase feldspars (Ca1-x Na x )(Al2-x Si2+x )O8: synthesis and characterizations of mechanical weathering relevant to Martian regolith
- Thermal evolution of soddyite, (UO2)2SiO4(H2O)2 and structurally related Na2(UO2)2SiO4F2
- Synthesis and crystallographic characterization of Cu[SeCN]
- Organic and Metalorganic Crystal Structures (Original Paper)
- Synthesis, structure and fluorescence of a novel zinc(II) polymer based on N-[(3-pyridine)-3-sulfonyl]-threonine
- Crystallographic Computing (Original Paper)
- How many symmetry operations are needed to generate a space group?