Cobalt-bearing adamite from Cap Garonne, Mine du Pradet, France – structural relationship to olivenite and magnetic behavior
-
Christian Paulsen
Abstract
The crystal structure of cobalt-bearing adamite (Zn, Co)2AsO4OH (so-called cobalton adamite) from Mine du Pradet, Cap Garonne, France has been refined from single crystal X-ray diffraction data: Pnnm, a = 831.39(4), b = 852.67(6), c = 605.84(6) pm, wR = 0.0568, 901 F 2 values, 48 variables. The composition of the single crystal and the bulk sample with EDX and ICP-OES was determined as Zn1.94Co0.06(AsO4)OH and (Co0.085Ni0.037Cu0.270Zn1.608)AsO4OH. The Co2+, Ni2+ and Cu2+ incorporation in the bulk sample leads to Curie paramagnetism with an experimental moment of 2.85 µB/M 2+ cation and explains the pink color along with the greenish edges. The Raman spectrum shows the characteristic vibrations of the AsO4 tetrahedra and the MO5 pyramids as well as the O–H stretching mode. The adamite structure is closely related with the olivenite type (space group P21/n11). This structural relationship is discussed on the basis of a group–subgroup scheme (Bärnighausen formalism).
Acknowledgments
We thank Dipl.-Ing. Jutta Kösters for the intensity data collections and M. Sc. Arthur Lenoch for collecting the Raman spectrum.
-
Research ethics: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.
-
Competing interests: The authors declare no conflicts of interest regarding this article.
-
Research funding: This research was funded by Universität Münster and Deutsche Forschungsgemeinschaft (INST 211/1034-1).
-
Data availability: Data is available from the corresponding author on well-founded request.
References
1. Palache, C., Dana, J. D., Dana, E. S., Berman, H., Frondel, C. The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University, 1837–1892, Vol. 2, 1944; pp. 864–866.Search in Google Scholar
2. Anthony, J. W., Bideaux, R. A., Bladh, K. W., Nichols, M. C. Adamite data sheet. In Handbook of Mineralogy; Mineralogical Society of America: Chantilly, USA. http://www.handbookofmineralogy.org/.Search in Google Scholar
3. Friedel, C. C. R. Hebd. Séances Acad. Sci. Paris 1866, 62, 692–695.Search in Google Scholar
4. Des Cloizeaux, A. C. R. Hebd. Séances Acad. Sci. Paris 1866, 62, 695–697.Search in Google Scholar
5. Kokkoros, P. Z. Kristallogr. 1937, 96, 417–437; https://doi.org/10.1524/zkri.1937.96.1.417.Search in Google Scholar
6. Moore, P. B., Smyth, J. R. Am. Mineral. 1968, 53, 1841–1845.Search in Google Scholar
7. Schreyer, W., Bernhardt, H.-J., Fransolet, A.-M., Armbruster, T. Contrib. Mineral. Petrol. 2004, 147, 276–287; https://doi.org/10.1007/s00410-004-0557-3.Search in Google Scholar
8. Heritsch, H. Z. Kristallogr. 1940, 102, 1–12; https://doi.org/10.1524/zkri.1940.102.1.1.Search in Google Scholar
9. Chukanov, N. V., Pushcharovsky, D. Y., Zubkova, N. V., Pekov, I. V., Pasero, M., Merlino, S., Möckel, S., Rabadanov, M. K., Belakovskiy, D. I. Dokl. Earth Sci. 2007, 415, 841–845; https://doi.org/10.1134/s1028334x07060037.Search in Google Scholar
10. Braithwaite, R. S. W., Pritchard, R. G., Paar, W. H., Pattrick, R. A. D. Mineral. Mag. 2005, 69, 145–153; https://doi.org/10.1180/0026461056920242.Search in Google Scholar
11. Favreau, G., Galéa-Clolus, V. Cap Garonne; Association des Amis de la Mine de Cap Garonne (AAMCG)–Association Française de Microminéralogie (AFM), Couleur et Impression Les Arcades: Castelnau-Le-Lez, France, 2014.Search in Google Scholar
12. Damour, A. A. C. R. Hebd. Séances Acad. Sci. Paris 1868, 67, 1124–1129.Search in Google Scholar
13. Pisani, F. C. R. Hebd. Séances Acad. Sci. Paris 1870, 70, 1001–1005.Search in Google Scholar
14. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar
15. Jinnouchi, S., Yoshiasa, A., Sugiyama, K., Shimura, R., Arima, H., Momma, K., Miyawaki, R. J. Mineral. Petrol. Sci. 2016, 111, 35–43; https://doi.org/10.2465/jmps.141216.Search in Google Scholar
16. Toman, K. Acta Crystallogr. B 1978, 34, 715–721; https://doi.org/10.1107/s0567740878003933.Search in Google Scholar
17. Strunz, H. Z. Kristallogr. 1936, 94, 60–73; https://doi.org/10.1524/zkri.1936.94.1.60.Search in Google Scholar
18. Mrose, M. E., Mayers, D. E., Wise, F. A. Am. Mineral. 1948, 33, 449–457.Search in Google Scholar
19. Hill, R. J. Am. Mineral. 1976, 61, 979–986.10.1002/jlac.197619760602Search in Google Scholar
20. Hawthorne, F. C. Can. Mineral. 1976, 14, 143–148.10.1016/0020-7225(76)90082-3Search in Google Scholar
21. Kato, T., Miúra, Y. Mineral. J. 1977, 8, 320–328; https://doi.org/10.2465/minerj.8.320.Search in Google Scholar
22. Zema, M., Tarantino, S. C., Boiocchi, M., Callegari, A. M. Mineral. Mag. 2016, 80, 901–914; https://doi.org/10.1180/minmag.2016.080.030.Search in Google Scholar
23. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar
24. Massa, W. Kristallstrukturbestimmung, 8th ed.; Springer Spektrum: Wiesbaden, 2015.10.1007/978-3-658-09412-6Search in Google Scholar
25. Cooper, R. I., Thompson, A. L., Watkin, D. J. J. Appl. Crystallogr. 2010, 43, 1100–1107; https://doi.org/10.1107/s0021889810025598.Search in Google Scholar
26. Kösters, J., Paulsen, C., Stegemann, F., Heying, B., Galéa-Clolus, V., Pöttgen, R. Z. Kristallogr. 2019, 235, 7–13; https://doi.org/10.1515/zkri-2019-0063.Search in Google Scholar
27. Toman, K. Acta Crystallogr. 1977, B33, 2628–2631; https://doi.org/10.1107/s0567740877009042.Search in Google Scholar
28. Burns, P., Hawthorne, F. C. Can. Mineral. 1995, 33, 885–888.10.1002/jlac.1995199505129Search in Google Scholar
29. Tarantino, S. C., Zema, M., Callegari, A. M., Boiocchi, M., Carpenter, M. A. Mineral. Mag. 2018, 82, 347–365; https://doi.org/10.1180/minmag.2017.081.048.Search in Google Scholar
30. Xu, J., Ma, M., Wei, S., Hu, X., Liu, Y., Liu, J., Fan, D., Xie, H. Phys. Chem. Miner. 2014, 41, 547–554; https://doi.org/10.1007/s00269-014-0666-0.Search in Google Scholar
31. Aroyo, M. I., Ed. International Tables for Crystallography: Volume A Space-Group Symmetry, International Union of Crystallography, 6th ed.; Wiley: Chichester, West Sussex, England, 2016.10.1107/97809553602060000114Search in Google Scholar
32. OriginPro 2021b (version 9.8.5.201); OriginLab Corp.: Northampton, Massachusetts (USA), 2021.Search in Google Scholar
33. CorelDRAW Graphics Suite 2017 (version 19.0.0.328); Corel Corporation: Ottawa, Ontario (Canada), 2017.Search in Google Scholar
34. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar
35. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537; https://doi.org/10.1002/zaac.200400250.Search in Google Scholar
36. Müller, U., Wondratschek, H. International Tables for Crystallography, Symmetry Relations Between Space Groups; John Wiley & Sons: Chichester, United Kingdom, Vol. A1, 2010.10.1107/97809553602060000110Search in Google Scholar
37. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen, 2nd ed.; Springer Spektrum Berlin: Heidelberg, Germany, 2023.10.1007/978-3-662-67166-5_12Search in Google Scholar
38. Li, C., Yang, H., Downs, R. T. Acta Crystallogr. 2008, E64, i60–i61; https://doi.org/10.1107/s1600536808026676.Search in Google Scholar PubMed PubMed Central
39. Lueken, H. Magnetochemie; Teubner Verlag: Stuttgart, Germany, 1999.10.1007/978-3-322-80118-0Search in Google Scholar
40. Rojo, J. M., Mesa, J. L., Lezama, L., Barberis, G. E., Rojo, T. J. Magn. Magn. Mater. 1996, 157–158, 493–495; https://doi.org/10.1016/0304-8853(95)01176-5.Search in Google Scholar
41. de Pedro, I., Rojo, J. M., Rodríguez-Fernández, J., Fernández-Díaz, M. T., Rojo, T. Phys. Rev. B 2010, 81, 134431.10.1103/PhysRevB.81.134431Search in Google Scholar
42. Makreski, P., Jovanovski, S., Pejov, L., Kloess, G., Hoebler, H.-J., Jovanovski, G. Spectrochim. Acta, Part A 2013, 113, 37–42; https://doi.org/10.1016/j.saa.2013.04.098.Search in Google Scholar PubMed
43. Lafuente, B., Downs, R. T., Yang, H., Stone, N. The power of databases: the RRUFF project. In Highlights in Mineralogical Crystallography; De Gruyter: Berlin, 2015; pp. 1–30.10.1515/9783110417104-003Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Cobalt-bearing adamite from Cap Garonne, Mine du Pradet, France – structural relationship to olivenite and magnetic behavior
- Organic and Metalorganic Crystal Structures (Original Paper)
- Series of new cobalt (II) and nickel (II) trinuclear fluorotrifluoroacetates with tetrahydrofuran – contribution to the inverse coordination chemistry and unique cations
- Helical self-assembly of an unusual pseudopeptide: crystallographic evidence
Articles in the same Issue
- Frontmatter
- In this issue
- Inorganic Crystal Structures (Original Paper)
- Cobalt-bearing adamite from Cap Garonne, Mine du Pradet, France – structural relationship to olivenite and magnetic behavior
- Organic and Metalorganic Crystal Structures (Original Paper)
- Series of new cobalt (II) and nickel (II) trinuclear fluorotrifluoroacetates with tetrahydrofuran – contribution to the inverse coordination chemistry and unique cations
- Helical self-assembly of an unusual pseudopeptide: crystallographic evidence