Home Cobalt-bearing adamite from Cap Garonne, Mine du Pradet, France – structural relationship to olivenite and magnetic behavior
Article
Licensed
Unlicensed Requires Authentication

Cobalt-bearing adamite from Cap Garonne, Mine du Pradet, France – structural relationship to olivenite and magnetic behavior

  • Christian Paulsen , Maximilian Kai Reimann , Michael Holtkamp , Valérie Galéa-Clolus , Uwe Karst and Rainer Pöttgen EMAIL logo
Published/Copyright: October 9, 2023

Abstract

The crystal structure of cobalt-bearing adamite (Zn, Co)2AsO4OH (so-called cobalton adamite) from Mine du Pradet, Cap Garonne, France has been refined from single crystal X-ray diffraction data: Pnnm, a = 831.39(4), b = 852.67(6), c = 605.84(6) pm, wR = 0.0568, 901 F 2 values, 48 variables. The composition of the single crystal and the bulk sample with EDX and ICP-OES was determined as Zn1.94Co0.06(AsO4)OH and (Co0.085Ni0.037Cu0.270Zn1.608)AsO4OH. The Co2+, Ni2+ and Cu2+ incorporation in the bulk sample leads to Curie paramagnetism with an experimental moment of 2.85 µB/M 2+ cation and explains the pink color along with the greenish edges. The Raman spectrum shows the characteristic vibrations of the AsO4 tetrahedra and the MO5 pyramids as well as the O–H stretching mode. The adamite structure is closely related with the olivenite type (space group P21/n11). This structural relationship is discussed on the basis of a group–subgroup scheme (Bärnighausen formalism).


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgments

We thank Dipl.-Ing. Jutta Kösters for the intensity data collections and M. Sc. Arthur Lenoch for collecting the Raman spectrum.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This research was funded by Universität Münster and Deutsche Forschungsgemeinschaft (INST 211/1034-1).

  5. Data availability: Data is available from the corresponding author on well-founded request.

References

1. Palache, C., Dana, J. D., Dana, E. S., Berman, H., Frondel, C. The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University, 1837–1892, Vol. 2, 1944; pp. 864–866.Search in Google Scholar

2. Anthony, J. W., Bideaux, R. A., Bladh, K. W., Nichols, M. C. Adamite data sheet. In Handbook of Mineralogy; Mineralogical Society of America: Chantilly, USA. http://www.handbookofmineralogy.org/.Search in Google Scholar

3. Friedel, C. C. R. Hebd. Séances Acad. Sci. Paris 1866, 62, 692–695.Search in Google Scholar

4. Des Cloizeaux, A. C. R. Hebd. Séances Acad. Sci. Paris 1866, 62, 695–697.Search in Google Scholar

5. Kokkoros, P. Z. Kristallogr. 1937, 96, 417–437; https://doi.org/10.1524/zkri.1937.96.1.417.Search in Google Scholar

6. Moore, P. B., Smyth, J. R. Am. Mineral. 1968, 53, 1841–1845.Search in Google Scholar

7. Schreyer, W., Bernhardt, H.-J., Fransolet, A.-M., Armbruster, T. Contrib. Mineral. Petrol. 2004, 147, 276–287; https://doi.org/10.1007/s00410-004-0557-3.Search in Google Scholar

8. Heritsch, H. Z. Kristallogr. 1940, 102, 1–12; https://doi.org/10.1524/zkri.1940.102.1.1.Search in Google Scholar

9. Chukanov, N. V., Pushcharovsky, D. Y., Zubkova, N. V., Pekov, I. V., Pasero, M., Merlino, S., Möckel, S., Rabadanov, M. K., Belakovskiy, D. I. Dokl. Earth Sci. 2007, 415, 841–845; https://doi.org/10.1134/s1028334x07060037.Search in Google Scholar

10. Braithwaite, R. S. W., Pritchard, R. G., Paar, W. H., Pattrick, R. A. D. Mineral. Mag. 2005, 69, 145–153; https://doi.org/10.1180/0026461056920242.Search in Google Scholar

11. Favreau, G., Galéa-Clolus, V. Cap Garonne; Association des Amis de la Mine de Cap Garonne (AAMCG)–Association Française de Microminéralogie (AFM), Couleur et Impression Les Arcades: Castelnau-Le-Lez, France, 2014.Search in Google Scholar

12. Damour, A. A. C. R. Hebd. Séances Acad. Sci. Paris 1868, 67, 1124–1129.Search in Google Scholar

13. Pisani, F. C. R. Hebd. Séances Acad. Sci. Paris 1870, 70, 1001–1005.Search in Google Scholar

14. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

15. Jinnouchi, S., Yoshiasa, A., Sugiyama, K., Shimura, R., Arima, H., Momma, K., Miyawaki, R. J. Mineral. Petrol. Sci. 2016, 111, 35–43; https://doi.org/10.2465/jmps.141216.Search in Google Scholar

16. Toman, K. Acta Crystallogr. B 1978, 34, 715–721; https://doi.org/10.1107/s0567740878003933.Search in Google Scholar

17. Strunz, H. Z. Kristallogr. 1936, 94, 60–73; https://doi.org/10.1524/zkri.1936.94.1.60.Search in Google Scholar

18. Mrose, M. E., Mayers, D. E., Wise, F. A. Am. Mineral. 1948, 33, 449–457.Search in Google Scholar

19. Hill, R. J. Am. Mineral. 1976, 61, 979–986.10.1002/jlac.197619760602Search in Google Scholar

20. Hawthorne, F. C. Can. Mineral. 1976, 14, 143–148.10.1016/0020-7225(76)90082-3Search in Google Scholar

21. Kato, T., Miúra, Y. Mineral. J. 1977, 8, 320–328; https://doi.org/10.2465/minerj.8.320.Search in Google Scholar

22. Zema, M., Tarantino, S. C., Boiocchi, M., Callegari, A. M. Mineral. Mag. 2016, 80, 901–914; https://doi.org/10.1180/minmag.2016.080.030.Search in Google Scholar

23. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

24. Massa, W. Kristallstrukturbestimmung, 8th ed.; Springer Spektrum: Wiesbaden, 2015.10.1007/978-3-658-09412-6Search in Google Scholar

25. Cooper, R. I., Thompson, A. L., Watkin, D. J. J. Appl. Crystallogr. 2010, 43, 1100–1107; https://doi.org/10.1107/s0021889810025598.Search in Google Scholar

26. Kösters, J., Paulsen, C., Stegemann, F., Heying, B., Galéa-Clolus, V., Pöttgen, R. Z. Kristallogr. 2019, 235, 7–13; https://doi.org/10.1515/zkri-2019-0063.Search in Google Scholar

27. Toman, K. Acta Crystallogr. 1977, B33, 2628–2631; https://doi.org/10.1107/s0567740877009042.Search in Google Scholar

28. Burns, P., Hawthorne, F. C. Can. Mineral. 1995, 33, 885–888.10.1002/jlac.1995199505129Search in Google Scholar

29. Tarantino, S. C., Zema, M., Callegari, A. M., Boiocchi, M., Carpenter, M. A. Mineral. Mag. 2018, 82, 347–365; https://doi.org/10.1180/minmag.2017.081.048.Search in Google Scholar

30. Xu, J., Ma, M., Wei, S., Hu, X., Liu, Y., Liu, J., Fan, D., Xie, H. Phys. Chem. Miner. 2014, 41, 547–554; https://doi.org/10.1007/s00269-014-0666-0.Search in Google Scholar

31. Aroyo, M. I., Ed. International Tables for Crystallography: Volume A Space-Group Symmetry, International Union of Crystallography, 6th ed.; Wiley: Chichester, West Sussex, England, 2016.10.1107/97809553602060000114Search in Google Scholar

32. OriginPro 2021b (version 9.8.5.201); OriginLab Corp.: Northampton, Massachusetts (USA), 2021.Search in Google Scholar

33. CorelDRAW Graphics Suite 2017 (version 19.0.0.328); Corel Corporation: Ottawa, Ontario (Canada), 2017.Search in Google Scholar

34. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar

35. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537; https://doi.org/10.1002/zaac.200400250.Search in Google Scholar

36. Müller, U., Wondratschek, H. International Tables for Crystallography, Symmetry Relations Between Space Groups; John Wiley & Sons: Chichester, United Kingdom, Vol. A1, 2010.10.1107/97809553602060000110Search in Google Scholar

37. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen, 2nd ed.; Springer Spektrum Berlin: Heidelberg, Germany, 2023.10.1007/978-3-662-67166-5_12Search in Google Scholar

38. Li, C., Yang, H., Downs, R. T. Acta Crystallogr. 2008, E64, i60–i61; https://doi.org/10.1107/s1600536808026676.Search in Google Scholar PubMed PubMed Central

39. Lueken, H. Magnetochemie; Teubner Verlag: Stuttgart, Germany, 1999.10.1007/978-3-322-80118-0Search in Google Scholar

40. Rojo, J. M., Mesa, J. L., Lezama, L., Barberis, G. E., Rojo, T. J. Magn. Magn. Mater. 1996, 157–158, 493–495; https://doi.org/10.1016/0304-8853(95)01176-5.Search in Google Scholar

41. de Pedro, I., Rojo, J. M., Rodríguez-Fernández, J., Fernández-Díaz, M. T., Rojo, T. Phys. Rev. B 2010, 81, 134431.10.1103/PhysRevB.81.134431Search in Google Scholar

42. Makreski, P., Jovanovski, S., Pejov, L., Kloess, G., Hoebler, H.-J., Jovanovski, G. Spectrochim. Acta, Part A 2013, 113, 37–42; https://doi.org/10.1016/j.saa.2013.04.098.Search in Google Scholar PubMed

43. Lafuente, B., Downs, R. T., Yang, H., Stone, N. The power of databases: the RRUFF project. In Highlights in Mineralogical Crystallography; De Gruyter: Berlin, 2015; pp. 1–30.10.1515/9783110417104-003Search in Google Scholar

Received: 2023-09-13
Accepted: 2023-09-23
Published Online: 2023-10-09
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2023-0037/html
Scroll to top button