Home Helical self-assembly of an unusual pseudopeptide: crystallographic evidence
Article
Licensed
Unlicensed Requires Authentication

Helical self-assembly of an unusual pseudopeptide: crystallographic evidence

  • Arpita Dutta EMAIL logo , Suven Das and Purak Das
Published/Copyright: October 30, 2023

Abstract

Pseudopeptides are a versatile class of organic building blocks having potential applications in a wide range of domains. In the current study, N and C termini protected l-alanine based short pseudopeptide was synthesized, where 5-aminoisophthalic acid (5-AIA), a rigid non-proteogenic γ-amino butyric acid was incorporated as C-terminal residue. The single crystal X-ray analysis revealed that the l-Ala residue of the aforesaid peptide adopts ϕ and ψ values characteristic of polyproline II conformation. Self-assembly of the pseudopeptide seems to represent a supramolecular helical architecture via NH⋯O, CH⋯O hydrogen bonding and π–π interactions.


Corresponding author: Arpita Dutta, Department of Chemistry, Rishi Bankim Chandra Evening College, Naihati, 24-Parganas (N), 743165, India, E-mail:

Funding source: SERB (DST), India

Award Identifier / Grant number: TAR/2018/000228

Acknowledgement

AD acknowledges laboratory facilities at R. B. C. Evening College, Naihati.

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This work was support by SERB (DST), India for fellowship [No.TAR/2018/000228].

  5. Data availability: Data will be made available on request.

References

1. Dhawan, S., Singh, H., Dutta, S., Haridas, V. Designer peptides as versatile building blocks for functional materials. Bioorg. Med. Chem. Lett. 2022, 68, 128733; https://doi.org/10.1016/j.bmcl.2022.128733.Search in Google Scholar PubMed

2. Alfonsoa, I. From simplicity to complex systems with bioinspired pseudopeptides. Chem. Commun. 2016, 52, 239–250; https://doi.org/10.1039/c5cc07596c.Search in Google Scholar PubMed

3. Ibrahim, M. I. A., Solimando, X., Stefan, L., Pickaert, G., Babin, J., Arnal-Herault, C., Roizard, D., Jonquières, A., Bodiguela, J., Averlant-Petit, M.-C. A lysine-based 2:1-[α/aza]-pseudopeptide series used as additives in polymeric membranes for CO2 capture: synthesis, structural studies, and application. RSC Adv. 2023, 13, 10051–10067; https://doi.org/10.1039/d3ra00409k.Search in Google Scholar PubMed PubMed Central

4. Luis, S. V., Alfonso, I. Bioinspired chemistry based on minimalistic pseudopeptides. Acc. Chem. Res. 2014, 47, 112–124; https://doi.org/10.1021/ar400085p.Search in Google Scholar PubMed

5. Faggi, E., Luis, S. V., Alfonso, I. Sensing, transport and other potential biomedical applications of pseudopeptides. Curr. Med. Chem. 2019, 26, 4065–4097; https://doi.org/10.2174/0929867325666180301091040.Search in Google Scholar PubMed

6. Jimmidi, R. Synthesis and applications of peptides and peptidomimetics in drug discovery. Eur. J. Org Chem. 2023, 26, e202300028; https://doi.org/10.1002/ejoc.202300028.Search in Google Scholar

7. Ding, Y., Ting, J. P., Liu, J., Al-Azzam, S., Pandya, P., Afshar, S. Impact of non-proteinogenic amino acids in the discovery and development of peptide therapeutics. Amino Acids 2020, 52, 1207–1226; https://doi.org/10.1007/s00726-020-02890-9.Search in Google Scholar PubMed PubMed Central

8. Adhikari, A., Bhattarai, B. R., Arya, A., Thapa, N., Puja, K. C., Adhikari, A., Maharjan, S., Chanda, P. B., Regmi, B. P., Parajuli, N. Reprogramming natural proteins using unnatural amino acids. RSC Adv. 2021, 11, 38126–38145; https://doi.org/10.1039/d1ra07028b.Search in Google Scholar PubMed PubMed Central

9. Roy, R., Paul, S. Disparate effect of hybrid peptidomimetics containing isomers of aminobenzoic Acid on hIAPP aggregation. J. Phys. Chem. B 2022, 126, 10427–10444; https://doi.org/10.1021/acs.jpcb.2c05970.Search in Google Scholar PubMed

10. Paul, A., Kalita, S., Kalita, S., Sukumar, P., Mandal, B. Disaggregation of amylin aggregate by novel conformationally restricted aminobenzoic acid containing α/β and α/γ hybrid peptidomimetics. Sci. Rep. 2017, 7, 40095; https://doi.org/10.1038/srep40095.Search in Google Scholar PubMed PubMed Central

11. Dutta, A., Drew, M. G. B., Pramanik, A. Design of a turn-linker-turn foldamer by incorporating meta-amino benzoic acid in the middle of a helix forming hexapeptide sequence: a helix breaking approach. J. Mol. Struct. 2009, 930, 55–59; https://doi.org/10.1016/j.molstruc.2009.04.037.Search in Google Scholar

12. Dutta, A., Kar, S., Fröhlich, R., Koley, P., Pramanik, A. A terminally modified pseudopeptide (Gly-m-aminobenzoic acid) produces supramolecular helix, staircase and water-mediated β sheet through self-assembly. ARKIVOC 2009, ii, 31–43; https://doi.org/10.3998/ark.5550190.0010.204.Search in Google Scholar

13. Sowinska, M., Morawiak, M., Bochyńska-Czyż, M., Lipkowski, A. W., Ziemińska, E., Zabłocka, B., Urbanczyk-Lipkowska, Z. Molecular antioxidant properties and in vitro cell toxicity of the p-aminobenzoic acid (PABA) functionalized peptide dendrimers. Biomolecules 2019, 9, 89; https://doi.org/10.3390/biom9030089.Search in Google Scholar PubMed PubMed Central

14. Kubik, S., Goddard, R. A new cyclic pseudopeptide composed of (l)-proline and 3-aminobenzoic acid subunits as a ditopic receptor for the simultaneous complexation of cations and anions. J. Org. Chem. 1999, 64, 9475–9486; https://doi.org/10.1021/jo991087d.Search in Google Scholar

15. Katoh, T., Suga, H. In vitro selection of foldamer-like macrocyclic peptides containing 2-aminobenzoic acid and 3-aminothiophene-2-carboxylic acid. J. Am. Chem. Soc. 2022, 144, 2069–2072; https://doi.org/10.1021/jacs.1c12133.Search in Google Scholar PubMed

16. Mandal, B., Giri, R. S. Supramolecular helical self-assembly of small peptides. Cryst. Eng. Comm. 2022, 24, 10–32; https://doi.org/10.1039/d1ce01349a.Search in Google Scholar

17. Ngo, D.-H., Vo, T. S. An updated review on pharmaceutical properties of gamma aminobutyric acid. Molecules 2019, 24, 2678; https://doi.org/10.3390/molecules24152678.Search in Google Scholar PubMed PubMed Central

18. Dutta, A., Das, S., Das, P., Maity, S., Ghosh, P. Solid state self-assembly and morphology of a rigid non-coded γ-amino acid inserted tripeptide. Z. Kristallogr. 2021, 236, 123–127; https://doi.org/10.1515/zkri-2021-2006.Search in Google Scholar

19. Dutta, A., Das, S., Das, P., Maity, S., Ghosh, P., Biswas, S. S. Unique supramolecular assembly of a synthetic achiral α, γ-hybrid peptide. Z. Kristallogr. 2022, 237, 77–81; https://doi.org/10.1515/zkri-2022-0002.Search in Google Scholar

20. Bruker. Smart, Saint and Sadabs; Bruker AXS Inc.: Madison, 2000.Search in Google Scholar

21. Sheldrick, G. M. A short history of Shelx. Acta Crystallogr. 2008, A64, 112–122, https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed

22. Sheldrick, G. M. Crystal structure refinement with shelxl. Acta Crystallogr. 2015, C71, 3–8, https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

23. Farrugia, L. J. WinGX and ORTEP for windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

24. Adzhubei, A. A., Sternberg, M. J. E., Alexander, A., Makarov, A. A. Polyproline-II helix in proteins: structure and function. J. Mol. Biol. 2013, 425, 2100–2132; https://doi.org/10.1016/j.jmb.2013.03.018.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2023-0034).


Received: 2023-08-30
Accepted: 2023-09-28
Published Online: 2023-10-30
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2023-0034/html
Scroll to top button