Home Superstructure formation in Sc5Cu2In4
Article
Licensed
Unlicensed Requires Authentication

Superstructure formation in Sc5Cu2In4

  • Nataliya L. Gulay , Rolf-Dieter Hoffmann , Vasyl‘ I. Zaremba , Yaroslav M. Kalychak and Rainer Pöttgen EMAIL logo
Published/Copyright: August 21, 2020

Abstract

Polycrystalline Sc5Cu2In4 was synthesized by induction melting of the elements and small single crystals were obtained by a slow cooling sequence. Sc5Cu2In4 is the first coinage metal representative in the family of the so-called 5-2-4 intermetallics. The Zr5Ir2In4 type structure of Sc5Cu2In4 was refined from single crystal X-ray diffractometer data: Pnma, a = 1716.75(6), b = 677.94(12), c = 760.69(2) pm, wR2 = 0.0531, 1932 F2 values and 58 variables. Sc5Cu2In4 adopts a superstructure of the Lu5Ni2In4 type (doubling of the b axis and klassengleiche symmetry reduction from Pbam to Pnma), caused by dislocation of the copper atoms (puckering effect). Geometrically, Sc5Cu2In4 is a 4:1 intergrowth structure of distorted AlB2 and CsCl related slabs.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149Münster, Germany, E-mail:

Award Identifier / Grant number: 501100001654

Acknowledgments

The research stay of NG in Münster was supported by the Deutscher Akademischer Austauschdienst.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by Deutscher Akademischer Austauschdienst.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zaremba, V. I., Kalychak, Y. M., Zavalii, P. Y., Bruskov, V. A. Krystallografija 1991, 36, 1415.Search in Google Scholar

2. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Search in Google Scholar

3. Solokha, P., De Negri, S., Saccone, A., Pavlyuk, V., Marciniak, B., Tedenac, J.-C. Acta Crystallogr. 2007, C63, i13. https://doi.org/10.1107/s0108270107001503.10.1107/S0108270107001503Search in Google Scholar PubMed

4. Sojka, L., Demchyna, M., Belan, B., Manyako, M., Kalychak, Y. Intermetallics 2014, 49, 14. https://doi.org/10.1016/j.intermet.2014.01.003.10.1016/j.intermet.2014.01.003Search in Google Scholar

5. Villars, P., Cenzual, K. Pearson’s crystal data: crystal structure database for inorganic compounds (release 2019/20), ASM International®: Materials Park, Ohio (USA), 2019. https://doi.org/10.5860/choice.45-3800.10.5860/CHOICE.45-3800Search in Google Scholar

6. Lukachuk, M., Pöttgen, R. Z. Naturforsch. 2002, 57b, 1353. https://doi.org/10.1515/znb-2002-1203.10.1515/znb-2002-1203Search in Google Scholar

7. Lukachuk, M., Hoffmann, R.-D., Pöttgen, R. Monatsh. Chem. 2005, 136, 127. https://doi.org/10.1007/s00706-004-0229-z.10.1007/s00706-004-0229-zSearch in Google Scholar

8. Lukachuk, M., Heying, B., Rodewald, U. C., Pöttgen, R. Heteroatom Chem. 2005, 16, 364. https://doi.org/10.1002/hc.20106.10.1002/hc.20106Search in Google Scholar

9. Tursina, A. I., Kurenbaeva, Z. M., Shtepa, D. V., Nesterenko, S. N., Noël, H. Acta Crystallogr. 2006, E62, i80. https://doi.org/10.1107/s1600536806007264.10.1107/S1600536806007264Search in Google Scholar

10. Zaremba, R., Rodewald, U. C., Pöttgen, R. Monatsh. Chem. 2007, 138, 819. https://doi.org/10.1007/s00706-007-0702-6.10.1007/s00706-007-0702-6Search in Google Scholar

11. Soika, L. D., Daszkiewicz, M., Belan, B. D., Manyako, M. B., Davydov, V. M., Akselrud, L. G., Kalychak, Y. M. Ukr. Khim. Zh. 2008, 74, 90.Search in Google Scholar

12. Tyvanchuk, Y. B., Rodewald, U. C., Kalychak, Y. M., Pöttgen, R. J. Solid State Chem. 2008, 181, 878. https://doi.org/10.1016/j.jssc.2008.01.035.10.1016/j.jssc.2008.01.035Search in Google Scholar

13. Zaremba, R., Hermes, W., Eul, M., Pöttgen, R. Z. Naturforsch. 2008, 63b, 1447. https://doi.org/10.1515/znb-2008-1219.10.1515/znb-2008-1219Search in Google Scholar

14. Tyvanchuk, Y. B., Baran, S., Duraj, R., Kalychak, Y. M., Przewoznik, J., Szytuła, A. J. Alloys Compd. 2014, 587, 573. https://doi.org/10.1016/j.jallcom.2013.10.084.10.1016/j.jallcom.2013.10.084Search in Google Scholar

15. Szytuła, A., Baran, S., Kaczorowski, D., Sikora, W., Hoser, A. J. Alloys Compd. 2014, 617, 149.10.1016/j.jallcom.2014.07.190Search in Google Scholar

16. Tyvanchuk, Y., Gulay, N., Bigun, I., Galadzhun, Y., Kalychak, Y. Z. Naturforsch. 2015, 70b, 283. https://doi.org/10.1515/znb-2014-0216.10.1515/znb-2014-0216Search in Google Scholar

17. Gulay, N. L., Daszkiewicz, M., Tyvanchuk, Y. B., Kalychak, Y. M., Kaczorowski, D. J. Alloys Compd. 2018, 750, 92. https://doi.org/10.1016/j.jallcom.2018.03.360.10.1016/j.jallcom.2018.03.360Search in Google Scholar

18. Tyvanchuk, Y. B., Penc, B., Szytuła, A., Zarzycki, A. Acta Phys. Polon. A 2010, 117, 599. https://doi.org/10.12693/aphyspola.117.599.10.12693/APhysPolA.117.599Search in Google Scholar

19. Gondek, Ł., Przewoźnik, J., Czub, J., Tyvanchuk, Y., Szytuła, A., Arurlaj, A. Intermetallics 2012, 21, 10. https://doi.org/10.1016/j.intermet.2011.09.007.10.1016/j.intermet.2011.09.007Search in Google Scholar

20. Provino, A., Mudryk, Y., Paudyal, D., Smetana, V., Manfrinetti, P. J. Appl. Phys. 2012, 111, 07E122.10.1063/1.3673432Search in Google Scholar

21. Ritter, C., Provino, A., Manfrinetti, P., Pecharsky, V. K., Gschneidner, K. A.Jr., Dhar, S. K. J. Phys.: Condens. Matter 2015, 27, 476001. https://doi.org/10.1088/0953-8984/27/47/476001.10.1088/0953-8984/27/47/476001Search in Google Scholar PubMed

22. Zhang, Z., Dong, X., Wang, Q., Li, L. Intermetallics 2018, 100, 136. https://doi.org/10.1016/j.intermet.2018.06.012.10.1016/j.intermet.2018.06.012Search in Google Scholar

23. Gulay, N. L., Tyvanchuk, Y. B., Kalychak, Y. M., Kaczorowski, D. J. Alloys Compd. 2018, 731, 222. https://doi.org/10.1016/j.jallcom.2017.10.023.10.1016/j.jallcom.2017.10.023Search in Google Scholar

24. Gulay, N., Tyvanchuk, Y., Daszkiewicz, M., Makhovych, B. S., Kalychak, Y. Z. Naturforsch. 2019, 74b, 289. https://doi.org/10.1515/znb-2018-0275.10.1515/znb-2018-0275Search in Google Scholar

25. Gulay, N. L., Tyvanchuk, Y. B., Daszkiewicz, M., Kaczorowski, D., Kalychak, Y. M. J. Alloys Compd. 2020, 815, 152660. https://doi.org/10.1016/j.jallcom.2019.152660.10.1016/j.jallcom.2019.152660Search in Google Scholar

26. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133.Search in Google Scholar

27. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143. https://doi.org/10.1524/zkri.1999.214.3.143.10.1524/zkri.1999.214.3.143Search in Google Scholar

28. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73. https://doi.org/10.1107/s0021889877012898.10.1107/S0021889877012898Search in Google Scholar

29. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar

30. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

31. Palenzona, A., Manfrinetti, P., Palenzona, R. J. Alloys Compd. 1996, 243, 182. https://doi.org/10.1016/s0925-8388(96)02402-4.10.1016/S0925-8388(96)02402-4Search in Google Scholar

32. Dwight, A. E., Downey, J. W., Conner, R. A.Jr. Acta Crystallogr. 1967, 22, 745. https://doi.org/10.1107/s0365110x6700146x.10.1107/S0365110X6700146XSearch in Google Scholar

33. Hulliger, F. J. Alloys Compd. 1996, 232, 160. https://doi.org/10.1016/0925-8388(95)01925-1.10.1016/0925-8388(95)01925-1Search in Google Scholar

34. Pöttgen, R. Z. Naturforsch. 1994, 49b, 1309.10.1515/znb-1994-1001Search in Google Scholar

35. Gravereau, P., Mirambet, F., Chevalier, B., Weill, F., Fournès, L., Laffargue, D., Bourée, F., Etourneau, J. J. Mater. Chem. 1994, 4, 1893. https://doi.org/10.1039/jm9940401893.10.1039/JM9940401893Search in Google Scholar

36. Donohue, J. The Structures of the Elements; Wiley: New York (U.S.A.), 1974.Search in Google Scholar

37. Lukachuk, M., Pöttgen, R. Z. Kristallogr. 2003, 218, 767. https://doi.org/10.1524/zkri.218.12.767.20545.10.1524/zkri.218.12.767.20545Search in Google Scholar

38. Zumdick, M. F., Pöttgen, R. Z. Kristallogr. 1999, 214, 90. https://doi.org/10.1524/zkri.1999.214.2.90.10.1524/zkri.1999.214.2.90Search in Google Scholar

39. Sebastian, C. P., Zhang, L., Fehse, C., Hoffmann, R.-D., Eckert, H., Pöttgen, R. Inorg. Chem. 2007, 46, 771. https://doi.org/10.1021/ic061691o.10.1021/ic061691oSearch in Google Scholar PubMed

Received: 2020-03-26
Accepted: 2020-06-17
Published Online: 2020-08-21
Published in Print: 2020-10-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0032/html?lang=en
Scroll to top button