Abstract
Pure TiO2, N- and Cu-doped and double-doped (Cu, N) samples were synthesized via sol–gel route in order to investigate the local and average structure of the crystalline TiO2 synthesized under different pH conditions. Samples are mainly constituted of anatase phase, even though low but significant amounts of secondary brookite grew in most samples. A detailed structural characterization was performed by means of synchrotron X-ray elastic scattering experiments; structural data of the different samples were obtained by means of the Rietveld refinement, whereas insights about their local structure were gained by means of the pair distribution analysis.
Acknowledgements
A. M. acknowledges Vadim Dyadkin for his kind support during data collection at ID11 beamline of the European Synchrotron Radiation Facility (ESRF; Grenoble, France).
References
[1] M. Keshmiri, M. Mohseni, T. Troczynski, Development of novel TiO2 sol-gel-derived composite and its photocatalytic activities for trichloroethylene oxidation. Appl. Catal. B2004, 53, 209.10.1016/j.apcatb.2004.05.016Search in Google Scholar
[2] J. Yu, B. Wang, Effect of calcination temperature on morphology and photoelectrochemical properties of anodized titanium dioxide nanotube arrays. Appl. Catal. B2010, 94, 295.10.1016/j.apcatb.2009.12.003Search in Google Scholar
[3] M. Sturini, A. Speltini, F. Maraschi, A. Profumo, L. Pretali, E. A. Irastorza, E. Fasani, A. Albini, Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight. Appl. Catal. B2012, 119–120, 32.10.1016/j.apcatb.2012.02.008Search in Google Scholar
[4] L. Ball, V. Caratto, E. Sanguineti, I. Firpo, M. Ferretti, P. Pelosi, Antibacterial activity of TiO2 nanoparticle coated endotracheal tubes: an in vitro study on Pseudomonas aeruginosa and Staphylococcus aureus. Eur. J. Anaesthesiol.2014, 31, 77.10.1097/00003643-201406001-00210Search in Google Scholar
[5] Z. A. Garmaroudi, M. R. Mohammadi, Design of TiO2/dye-sensitized solar cell photoanode electrodes with different microstructures and arrangement modes of the layers. J. Sol-Gel Sci. Technol.2015, 76, 666.10.1007/s10971-015-3819-9Search in Google Scholar
[6] M. Comotto, A. A. Casazza, B. Aliakbarian, V. Caratto, M. Ferretti, P. Perego, Influence of TiO2 nanoparticles on growth and phenolic compounds production in photosynthetic microorganisms. Sci. World J.2014, 2014, 961437.10.1155/2014/961437Search in Google Scholar
[7] A. Zaleska, Doped-TiO2: a review. Recent Patents Eng.2008, 2, 157.10.2174/187221208786306289Search in Google Scholar
[8] V. Caratto, L. Ball, E. Sanguineti, A. Insorsi, I. Firpo, S. Alberti, M. Ferrett, P. Pelosi, Antibacterial activity of standard and N-doped titanium dioxide-coated endotracheal tubes: an in vitro study. Rev. Bras. Ter. Intensiva2017, 29, 55.10.5935/0103-507X.20170009Search in Google Scholar PubMed PubMed Central
[9] F. Locardi, E. Sanguineti, M. Fasoli, M. Martini, G. A. Costa, M. Ferretti, V. Caratto, Photocatalytic activity of TiO2 nanopowders supported on a new persistent luminescence phosphor. Catal. Commun.2016, 74, 24.10.1016/j.catcom.2015.10.037Search in Google Scholar
[10] H. Zhang, J. F. Banfield, Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem.1998, 8, 2073.10.1039/a802619jSearch in Google Scholar
[11] A. Fujishima, X. Zhang, D. A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep.2008, 63, 515.10.1016/j.surfrep.2008.10.001Search in Google Scholar
[12] V. Caratto, L. Setti, S. Campodonico, M. M. Carnasciali, R. Botter, M. Ferretti, Synthesis and characterization of nitrogen-doped TiO2 nanoparticles prepared by sol–gel method. J. Sol-Gel Sci. Technol.2012, 63, 16.10.1007/s10971-012-2756-0Search in Google Scholar
[13] M. M. Mohamed, M. M. Al-Esaimi, Characterization, adsorption and photocatalytic activity of vanadium-doped TiO2 and sulfated TiO2 (rutile) catalysts: degradation of methylene blue dye. J. Mol. Catal. A Chem.2006, 255, 53.10.1016/j.molcata.2006.03.071Search in Google Scholar
[14] K. E. Karakitsou, X. E. Verykios, Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage. J. Phys. Chem.1993, 97, 1184.10.1021/j100108a014Search in Google Scholar
[15] S. Yang, L. Gao, New method to prepare nitrogen-doped titanium dioxide and its photocatalytic activities irradiated by visible light. J. Am. Ceram. Soc.2004, 87, 1803.10.1111/j.1551-2916.2004.01803.xSearch in Google Scholar
[16] Y. Cong, J. Zhang, F. Chen, M. Anpo, Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C2007, 111, 6976.10.1021/jp0685030Search in Google Scholar
[17] M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, M. Matsuoka, The preparation and characterization of highly efficient titanium oxide–based photofunctional materials. Annu. Rev. Mater. Res.2005, 35, 1.10.1146/annurev.matsci.35.100303.121340Search in Google Scholar
[18] T. Ohno, T. Mitsui, M. Matsumura, Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem. Lett.2003, 32, 364.10.1246/cl.2003.364Search in Google Scholar
[19] A. L. Linsebigler, A. L. Linsebigler, J. T. Yates Jr, G. Lu, G. Lu, J. T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev.1995, 95, 735.10.1021/cr00035a013Search in Google Scholar
[20] M. A. Fox, M. T. Dulay, Heterogeneous photocatalysis. Chem. Rev.1993, 93, 341.10.1021/cr00017a016Search in Google Scholar
[21] S. Klosek, D. Raftery, Visible light driven V-doped TiO photocatalyst and its photooxidation of ethanol2. J. Phys. Chem. B2001, 105, 2815.10.1021/jp004295eSearch in Google Scholar
[22] P. K. Surolia, R. J. Tayade, R. V. Jasra, Effect of anions on the photocatalytic activity of Fe (III) salts impregnated TiO2. Society2007, No. Iii, 6196.10.1021/ie0702678Search in Google Scholar
[23] V. Caratto, F. Locardi, S. Alberti, S. Villa, E. Sanguineti, A. Martinelli, T. Balbi, L. Canesi, M. Ferretti, Different sol-gel preparations of iron-doped TiO2 nanoparticles: characterization, photocatalytic activity and cytotoxicity. J. Sol-Gel Sci. Technol.2016, 80, 152.10.1007/s10971-016-4057-5Search in Google Scholar
[24] S. Villa, V. Caratto, F. Locardi, S. Alberti, M. Sturini, A. Speltini, F. Maraschi, F. Canepa, M. Ferretti, Enhancement of TiO2 NPs activity by Fe3O4 nano-seeds for removal of organic pollutants in water. Materials (Basel).2016, 9, 771.10.3390/ma9090771Search in Google Scholar PubMed PubMed Central
[25] P. Pongwan, K. Wetchakun, S. Phanichphant, N. Wetchakun, Enhancement of visible-light photocatalytic activity of Cu-doped TiO2 nanoparticles. Res. Chem. Intermed.2016, 42, 2815.10.1007/s11164-015-2179-ySearch in Google Scholar
[26] I. Ganesh, P. P. Kumar, I. Annapoorna, J. M. Sumliner, M. Ramakrishna, N. Y. Hebalkar, G. Padmanabham, G. Sundararajan, Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications. Appl. Surf. Sci.2014, 293, 229.10.1016/j.apsusc.2013.12.140Search in Google Scholar
[27] H. S. Park, D. H. Kim, S. J. Kim, K. S. Lee, The photocatalytic activity of 2.5 wt% Cu-doped TiO2 nano powders synthesized by mechanical alloying. J. Alloys Compd.2006, 415, 51.10.1016/j.jallcom.2005.07.055Search in Google Scholar
[28] M. Sahu, P. Biswas, Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor. Nanoscale Res. Lett.2011, 6, 441.10.1186/1556-276X-6-441Search in Google Scholar PubMed PubMed Central
[29] S.-X. Wu, Z. Ma, Y.-N. Qin, H. Fei, L.-S. Jia, Y.-J. Xhang, XPS study of copper doping TiO2 photocatalyst. Acta Phys. Sin.2003, 19, 967.10.3866/PKU.WHXB20031017Search in Google Scholar
[30] J. Marugán, P. Christensen, T. Egerton, H. Purnama, Influence of the synthesis pH on the properties and activity of sol-gel TiO2 photocatalysts. Int. J. Photoenergy2008, 2008, 1.10.1155/2008/759561Search in Google Scholar
[31] V. Caratto, M. Ferretti, L. Setti, Synthesis of TiO2 rutile nanoparticles by PLA in solution. Appl. Surf. Sci.2012, 258, 2393.10.1016/j.apsusc.2011.10.057Search in Google Scholar
[32] P. A. Connor, K. D. Dobson, A. J. McQuillan, Infrared spectroscopy of the TiO2/aqueous solution interface. Langmuir1999, 15, 2402.10.1021/la980855dSearch in Google Scholar
[33] A. J. Maira, J. M. Coronado, V. Augugliaro, K. L. Yeung, J. C. Conesa, J. Soria, Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene. J. Catal.2001, 202, 413.10.1006/jcat.2001.3301Search in Google Scholar
[34] M. Takeuchi, G. Martra, S. Coluccia, M. Anpo, Investigations of the structure of H2O clusters adsorbed on TiO2 surfaces by near-infrared absorption spectroscopy. J. Phys. Chem. B2005, 109, 7387.10.1021/jp040630dSearch in Google Scholar
[35] R. A. Young, The Rietveld Method. Oxford University Press, Oxford, p. 1–38, 1993.10.1093/oso/9780198555773.003.0001Search in Google Scholar
[36] J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter1993, 192, 55.10.1016/0921-4526(93)90108-ISearch in Google Scholar
[37] J. I. Langford, D. Louër, E. J. Sonneveld, J. W. Visser, Applications of total pattern fitting to a study of crystallite size and strain in zinc oxide powder. Powder Diffr.1986, 1, 211.10.1017/S0885715600011738Search in Google Scholar
[38] P. Juhás, T. Davis, C. L. Farrow, S. J. L. Billinge, PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions. J. Appl. Crystallogr.2013, 46, 560.10.1107/S0021889813005190Search in Google Scholar
[39] B. H. Toby, T. Egami, Accuracy of pair distribution function analysis applied to crystalline and non-crystalline materials. Acta Crystallogr. Sect. A1992, 48, 336.10.1107/S0108767391011327Search in Google Scholar
[40] C. L. Farrow, P. Juhas, J. W. Liu, D. Bryndin, E. S. Božin, J. Bloch, T. Proffen, S. J. L. Billinge, PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J. Phys.: Condens. Matter2007, 19, 335219.10.1088/0953-8984/19/33/335219Search in Google Scholar
[41] N. F. Zobov, O. L. Polyansky, C. R. Le Sueur, J. Tennyson, Vibration-rotation levels of water beyond the Born-Oppenheimer approximation. Chem. Phys. Lett.1996, 260, 381.10.1016/0009-2614(96)00872-XSearch in Google Scholar
[42] I. D. Brown, D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst.1985, B41, 244.10.1107/S0108768185002063Search in Google Scholar
[43] E. Ramos, I. Alvarez, M. L. Lopez, M. L. Veiga, M. Gaitan, C. Pico, J. Soria, A. Jerez, Synthesis, structural characterization and properties of solid solutions Ti1-xCux/3Sb2x/3O2 with rutile structure. Mater. Res. Bull.1992, 27, 1431.10.1016/0025-5408(92)90008-NSearch in Google Scholar
[44] N. Reeves-McLaren, M. C. Ferrarelli, Y.-W. Tung, D. C. Sinclair, A. R. West, Synthesis, structure and electrical properties of Cu3.21Ti1.16Nb2.63O12 and the CuOx–TiO2–Nb2O5 pseudoternary phase diagram. J. Solid State Chem.2011, 184, 1813.10.1002/chin.201142005Search in Google Scholar
[45] J. F. Banfield, D. R. Veblen, Conversion of perovskite to anatase and TiO2 (B): a TEM study and the use of fundamental building blocks for understanding relationships among the TiO2 minerals. Am. Mineral.1992, 77, 545.Search in Google Scholar
[46] V. Legrand, O. Merdrignac-conanec, W. Paulus, T. Hansen, Study of the thermal nitridation of nanocrystalline Ti(OH)4 by X-ray and in situ neutron powder diffraction. J. Phys. Chem. A2012, 116, 9561.10.1021/jp306796uSearch in Google Scholar PubMed
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Recent advances in the chemistry of uranium halides in anhydrous ammonia
- The correct symmetry of the six-fold twin in β-Ca11B2Si4O22
- The allotwinning of KCa3Te5O12Cl3: an OD interpretation
- Zippeite from Cap Garonne, France: an example of reticular twinning
- Structural studies on copper and nitrogen doped nanosized anatase
- Low-dimensional compounds containing cyanido groups. Part XXXIV. Structure, spectral and magnetic properties of the first complex with pyridylbenzimidazole and nonlinear pseudohalide anion
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Recent advances in the chemistry of uranium halides in anhydrous ammonia
- The correct symmetry of the six-fold twin in β-Ca11B2Si4O22
- The allotwinning of KCa3Te5O12Cl3: an OD interpretation
- Zippeite from Cap Garonne, France: an example of reticular twinning
- Structural studies on copper and nitrogen doped nanosized anatase
- Low-dimensional compounds containing cyanido groups. Part XXXIV. Structure, spectral and magnetic properties of the first complex with pyridylbenzimidazole and nonlinear pseudohalide anion