Abstract
The X-ray diffraction experiment of iron at temperatures up to 1000°C, which Albert Hull conducted 100 years ago, in 1917, may be regarded as the first in situ diffraction experiment. Ever since, diffraction methods matured and became widely used and powerful tools for materials characterization and structure determination. Considerable progress was made in radiation source brilliance and diffraction instrumentation, enabling time-dependent in situ studies of a wide range of compounds and processes today. In this contribution, we will give a brief historical sketch of the first in situ diffraction experiment and present some modern-day examples, highlighting the impact of this investigation technique to solid-state sciences.
References
[1] W. Friedrich, P. Knipping, M. Laue, Sitzungsber. K. Bayer. Akad. Wiss. 1912, 303.Search in Google Scholar
[2] W. L. Bragg, Proc. Cambridge Philos. Soc.1913, 17, 43.Search in Google Scholar
[3] P. Debye, P. Scherrer, Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. 1916, 1.Search in Google Scholar
[4] A. W. Hull, Phys. Rev.1917, 9, 84.Search in Google Scholar
[5] A. W. Hull, Phys. Rev.1917, 10, 661.10.1103/PhysRev.10.661Search in Google Scholar
[6] M. Etter, R. E. Dinnebier, Z. Anorg. Allg. Chem.2014, 640, 3015.10.1002/zaac.201400526Search in Google Scholar
[7] P. Kasten, Phys. Unserer. Zeit.2015, 46, 174.10.1002/piuz.201401405Search in Google Scholar
[8] J. M. Delgado, Powder Diffr.2017, 32, 2.10.1017/S0885715616000750Search in Google Scholar
[9] C. G. Suits, J. M. Lafferty, Albert Hull (1880–1966), A biographical memoir, National Academy of Sciences, Washington, 1970.Search in Google Scholar
[10] A. Hull, Autobiography, in Fifty Years of X-Ray Diffraction, (Ed. P. P. Ewald) Springer, Berlin, 1962, and International Union of Crystallography, N. V. A Oosthoek’s Uitgeversmaatschappij, Utrecht, 1962, p 45. Online available: http://www.iucr.org/publ/50yearsofxraydiffraction.Search in Google Scholar
[11] T. C. Hansen, H. Kohlmann, Z. Anorg. Allg. Chem.2014, 640, 3044.10.1002/zaac.201400359Search in Google Scholar
[12] M. I. Eremets, High Pressures Experimental Methods, Oxford University Press, 1996.10.1093/oso/9780198562696.001.0001Search in Google Scholar
[13] A. Katrusiak, Acta Crystallogr. A2008, 64, 135.10.1107/S0108767307061181Search in Google Scholar PubMed
[14] Web of Science, © 2017 Clarivate Analytics.Search in Google Scholar
[15] O. Isnard, C. R. Phys.2007, 8, 789.10.1016/j.crhy.2007.10.002Search in Google Scholar
[16] N. Pienack, W. Bensch, Angew. Chem.2011, 123, 2062.10.1002/ange.201001180Search in Google Scholar
[17] E. Mac, A. Gray, C. J. Webb, Int. J. Hydrogen Energy2012, 37, 10182.10.1016/j.ijhydene.2012.03.051Search in Google Scholar
[18] D. R. Neuville, L. Hennet, P. Florian, D. de Ligny, Rev. Mineral Geochem.2014, 78, 779.10.2138/rmg.2013.78.19Search in Google Scholar
[19] K. T. Møller, B. R. S. Hansen, A.-C. Dippel, J.-E. Jørgensen, T. R. Jensen, Z. Anorg. Allg. Chem.2014, 640, 3029.10.1002/zaac.201400262Search in Google Scholar
[20] B. R. S. Hansen, D. K. T. Moller, M. Paskevicius, A.-C. Dippel, P. Walter, C. J. Webb, C. Pistidda, N. Bergemann, M. Dornheim, T. Klassen, J.-E. Jorgensen, T. R. Jensen, J. Appl. Crystallogr.2015, 48, 1234.10.1107/S1600576715011735Search in Google Scholar
[21] V. K. Peterson, J. E. Auckett, W.-K. Pang, IUCrJ2017, 4, 540.10.1107/S2052252517010363Search in Google Scholar
[22] A. Götze, H. Auer, R. Finger, T. C. Hansen, H. Kohlmann, Physica B2018, accepted for publication.Search in Google Scholar
[23] M. Widenmeyer, R. Niewa, T. C. Hansen, H. Kohlmann, Z. Anorg. Allg. Chem.2013, 639, 285.10.1002/zaac.201200299Search in Google Scholar
[24] M. Widenmeyer, T. C. Hansen, E. Meissner, R. Niewa, Z. Anorg. Allg. Chem.2014, 640, 1265.10.1002/zaac.201300676Search in Google Scholar
[25] F. Tang, T. Parker, G.-C. Wang, T.-M. Lu, J. Phys. D: Appl. Phys.2007, 40, R427.10.1088/0022-3727/40/23/R01Search in Google Scholar
[26] J. R. Günter, H. R. Oswald, J. Appl. Crystallogr.1970, 3, 21.10.1107/S0021889870005587Search in Google Scholar
[27] M. Figlarz, B. Gérand, A. Delahaye-Vidal, B. Dumont, F. Harb, A. Coucou, F. Fieviet, Solid State Ionics1990, 43, 143.10.1016/0167-2738(90)90480-FSearch in Google Scholar
[28] U. Ruschewitz, R. Pöttgen, Z. Anorg. Allg. Chem.1999, 625, 1599.10.1002/(SICI)1521-3749(199910)625:10<1599::AID-ZAAC1599>3.0.CO;2-JSearch in Google Scholar
[29] H. Kohlmann, K. Yvon, J. Alloys Comp.2000, 309, 123.10.1016/S0925-8388(00)01040-9Search in Google Scholar
[30] A. Goujon, B. Gillon, A. Debede, A. Cousson, A. Gukasov, J. Jeftic, G. J. McIntyre, F. Varret, Phys. Rev. B2006, 73, 104413.10.1103/PhysRevB.73.104413Search in Google Scholar
[31] J. L. Jones, M. Hoffman, J. E. Daniels, A. J. Studer, Appl. Phys. Lett.2006, 89, 092901.10.1063/1.2338756Search in Google Scholar
[32] P. Norby, J. C. Hansen, A. N. Fitch, G. Vaughan, L. Flaks, A. Gualtieri, Chem. Mater.2000, 12, 1473.10.1021/cm991210hSearch in Google Scholar
[33] R. I. Walton, D. O’Hare, Chem. Commun. (Cambridge, U. K.)2000, 2283.10.1039/b007795jSearch in Google Scholar
[34] F. Xia, J. Brugger, G. Qian, Y. Ngothai, B. O’Neill, J. Zhao, S. Pullen, S. Olsen, A. Pring, J. Appl. Crystallogr.2012, 45, 166.10.1107/S0021889812002300Search in Google Scholar
[35] U. Schwarz, A. Grzechnik, K. Syassen, I. Loa, M. Hanfland, Phys. Rev. Lett.1999, 83, 4085.10.1103/PhysRevLett.83.4085Search in Google Scholar
[36] Y. Ma, M. Eremets, A. R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A. O. Lyakhov, M. Valle, V. Prakapenka, Nature2009, 458, 182.10.1038/nature07786Search in Google Scholar PubMed
[37] F. Datchi, G. Weck, Z. Kristallogr.2014, 229, 135.10.1515/zkri-2013-1669Search in Google Scholar
[38] C. S. Yoo, H. Cynn, F. Gygi, G. Galli, V. Iota, M. Nicol, S. Carlson, D. Häusermann, C. Mailhiot, Phys. Rev. Lett.1999, 83, 5527.10.1103/PhysRevLett.83.5527Search in Google Scholar
[39] W. F. Kuhs, T. C. Hansen, Rev. Mineral Geochem.2006, 63, 171.10.2138/rmg.2006.63.8Search in Google Scholar
[40] T. Kandemir, M. E. Schuster, A. Senyshyn, M. Behrens, R. Schlögl, Angew. Chem. Int. Ed.2013, 52, 12723.10.1002/anie.201305812Search in Google Scholar PubMed
[41] I. Halasz, A. Puškarić, S. A. J. Kimber, P. J. Beldon, A. M. Belenguer, F. Adams, V. Honkomäki, R. E. Dinnebier, B. Patel, W. Jones, V. Štrukil, T. Friščić, Angew. Chem. Int. Ed.2013, 52, 11538.10.1002/anie.201305928Search in Google Scholar
[42] T. Friščić, I. Halasz, P. J. Beldon, A. M. Belenguer, F. Adams, S. A. J. Kimber, V. Honkomäki, R. E. Dinnebier, Nature Chem.2013, 5, 66.10.1038/nchem.1505Search in Google Scholar
[43] S. Liesert, D. Fruchart, P. de Rango, J. L. Soubeyroux, J. Alloys Comp.1997, 253–254, 140.10.1016/S0925-8388(96)02975-1Search in Google Scholar
[44] S. Liesert, D. Fruchart, P. de Rango, S. Rivoirard, J. L. Soubeyroux, R. P. de la Bathie, R. Tournier, J. Alloys Comp.1997, 262–263, 366.10.1016/S0925-8388(97)00412-XSearch in Google Scholar
[45] J. L. Soubeyroux, D. Fruchart, S. Liesert, P. de Rango, S. Rivoirard, Physica B1998, 241–243, 341.10.1016/S0921-4526(97)00580-2Search in Google Scholar
[46] K. L. A. Belener, H. Kohlmann, J. Magn. Magn. Mater.2014, 370, 134.10.1016/j.jmmm.2014.06.066Search in Google Scholar
[47] J. Yang, S. Muhammad, M. R. Jo, H. Kim, K. Song, D. A, Agyeman, Y.-I. Kim, W.-S. Yoon, Y.-M. Kang, Chem. Soc. Rev.2016, 45, 5717.10.1039/C5CS00734HSearch in Google Scholar PubMed
[48] G. Behrendt, C. Reichert, H. Kohlmann, J. Phys. Chem. C2016, 120, 13450.10.1021/acs.jpcc.6b04902Search in Google Scholar
[49] D. J. Bull, N. Sorbie, G. Baldissin, D. Moser, M. T. F. Telling, R. I. Smith, D. H. Gregory, D. K. Ross, J. Phys. Chem. C2016, 120, 13450.10.1021/acs.jpcc.6b04902Search in Google Scholar
[50] E. J. Carrington, I. J. Victoria-Yrezabal, L. Brammer, Acta Crystallogr., Sect. B: Struct. Sci.2014, 70, 404.10.1107/S2052520614009834Search in Google Scholar PubMed PubMed Central
[51] M. Martin, N. Lakshmi, U. Koops, H.-I. Yoo, Z. Phys. Chem. (Muenchen, Ger.) 2007, 221, 1499.10.1524/zpch.2007.221.11-12.1499Search in Google Scholar
[52] T. C. Hansen, P. F. Henry, H. E. Fischer, J. Torresgrossa, P. Convert, Meas. Sci. Technol.2008, 19, 034001.10.1088/0957-0233/19/3/034001Search in Google Scholar
[53] D. P. Riley, E. H. Kisi, T. C. Hansen, J. Am. Ceram. Soc.2008, 91, 3207.10.1111/j.1551-2916.2008.02637.xSearch in Google Scholar
[54] C. Curfs, A. E. Terry, G. B. M. Vaughn, E. Kisi, M. A. Rodriguez, A. Kvick, Adv. Sci. Techn.2006, 45, 1029.10.4028/www.scientific.net/AST.45.1029Search in Google Scholar
[55] A. E. Gleason, C. A. Bolme, H. J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R. G. Kraus, J. H. Eggert, D. E. Fratanduono, G. W. Collins, R. Sandberg, W. Yang, W. L. Mao, Nature Commun.2015, 6, 8191.10.1038/ncomms9191Search in Google Scholar PubMed PubMed Central
[56] D. von der Linde, K. Sokolowski-Tinten, Ch. Blome, C. Dietrich, A. Tarasevitch, A. Cavalleri, J. A. Squier, Z. Phys. Chem. (Muenchen, Ger.) 2001, 215, 1527.10.1524/zpch.2001.215.12.1527Search in Google Scholar
[57] P. Parisiades, C. Payre, J. P. Gonzales, J. L. Laborier, J. P. Bidet, P. Guionneau, P. Rosa, E. Lelièvre, M. H. Lemée-Cailleau, Meas. Sci. Technol. 2016, 27, 047001.10.1088/0957-0233/27/4/047001Search in Google Scholar
[58] T. E. Engin, A. V. Powell, R. Haynes, M. A. H. Chowdhury, C. M. Goodway, R. Done, O. Kirichek, S. Hull, Rev. Sci. Instrum.2008, 79, 095104.10.1063/1.2979011Search in Google Scholar PubMed
[59] L. Braconnier, I. Clémencon, C. Legens, V. Moizan, F. Diehl, H. Pillière, P. Echegut, D. De Sousa Meneses, Y. Schuurman, J. Appl. Crystallogr.2013, 46, 262.10.1107/S0021889812042781Search in Google Scholar
[60] S. Keilholz, H. Kohlmann, unpublished results.Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Halogen and chalcogen bonding in dichloromethane solvate of cyclometalated iridium(III) isocyanide complex
- Crystal structure of vanuralite, Al[(UO2)2(VO4)2](OH)·8.5H2O
- Synthesis, synchrotron diffraction study and twinning in Na2Ca4Mg2Si4O15 – a heteropolyhedral framework compound
- Increasing data completeness in synchrotron tts-microdiffraction experiments for δ-recycling phasing of low-symmetry compounds
- The crystal structures of carbonyl iron powder – revised using in situ synchrotron XRPD
- Historical Note
- 100 years in situ diffraction
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Halogen and chalcogen bonding in dichloromethane solvate of cyclometalated iridium(III) isocyanide complex
- Crystal structure of vanuralite, Al[(UO2)2(VO4)2](OH)·8.5H2O
- Synthesis, synchrotron diffraction study and twinning in Na2Ca4Mg2Si4O15 – a heteropolyhedral framework compound
- Increasing data completeness in synchrotron tts-microdiffraction experiments for δ-recycling phasing of low-symmetry compounds
- The crystal structures of carbonyl iron powder – revised using in situ synchrotron XRPD
- Historical Note
- 100 years in situ diffraction