Home Crystal structure of vanuralite, Al[(UO2)2(VO4)2](OH)·8.5H2O
Article
Licensed
Unlicensed Requires Authentication

Crystal structure of vanuralite, Al[(UO2)2(VO4)2](OH)·8.5H2O

  • Jakub Plášil EMAIL logo
Published/Copyright: June 29, 2017

Abstract

Vanuralite, Al[(UO2)2(VO4)2](OH)·8.5H2O, is a rare supergene uranyl vanadate that forms during hydration-oxidation weathering of uraninite in oxide zones of U deposits. On the basis of single-crystal X-ray diffraction data it is monoclinic, space group P21/n, with a=10.4637(10), b=8.4700(5), c=20.527(2) Å, β=102.821(9)°, V=1773.9(3) Å3 and Z=4, Dcalc.=3.561 g cm−3. The structure of vanuralite (R=0.058 for 2638 unique observed reflections) contains uranyl vanadate sheets of francevillite topology of the composition [(UO2)2(VO4)2]2−. Sheets are stacked perpendicular to c, and an interstitial complex [6]Al(OH)(H2O)4(H2O)4.5; adjacent structural sheets are linked through an extensive network of hydrogen bonds. Vanuralite is the most complex mineral among uranyl vanadates, with 961 bits/cell. The scarcity of occurrences is probably caused by the less common combination of elements present in the structure, as well as the relatively high complexity of the structure (compared to related minerals), arising namely from the complicated network of H-bonds.

Acknowledgements

Two anonymous referees and the editor Sergey Antipov, as well, are acknowledged for their constructive comments. This research was financially supported the project No. LO1603 under the Ministry of Education, Youth and Sports National sustainability program I of Czech Republic.

References

[1] M. Fayek, Uranium ore deposits – a review, in Uranium, from Cradle to Grave, (Eds. P. C. Burns and G. E. Sigmon) Mineralogical Association of Canada Short Course, Winnipeg, MB, Vol. 43, p. 121, 2013.Search in Google Scholar

[2] J. Plášil, Oxidation–hydration weathering of uraninite: the current state-of-knowledge. J. Geosci.2014, 59, 99.10.3190/jgeosci.163Search in Google Scholar

[3] J. Janeczek, R. C. Ewing, V. M. Oversby, L. O. Werme, Uraninite and UO2 in spent nuclear fuel: a comparison. J. Nucl. Mater.1996, 238, 121.10.1016/S0022-3115(96)00345-5Search in Google Scholar

[4] T. K. Tokunaga, Y. Kim, J. Wan, L. Yang, Aqueous uranium(VI) concentrations controlled by calcium uranyl vanadate precipitates. Environ. Sci. Technol.2012, 46, 7471.10.1021/es300925uSearch in Google Scholar PubMed

[5] S. V. Krivovichev, J. Plášil, Mineralogy and crystallography of uranium, in Uranium, from Cradle to Grave, (Eds. P. C. Burns and G. E. Sigmon) Mineralogical Association of Canada Short Course, Winnipeg MB, Vol. 43, p. 15, 2013.Search in Google Scholar

[6] F. Abraham, C. Dion, M. Saadi, Carnotite analogues: synthesis, structure and properties of the Na1-xKxUO2VO4 solid solution (0<x<1). J. Mater. Chem.1993, 3, 459.10.1039/JM9930300459Search in Google Scholar

[7] N. Tancret, S. Obbade, F. Abraham, Ab initio structure determination of uranyl divanadate (UO2)2V2O7 from powder X-ray diffraction data. Eur. J. Solid State Inorg. Chem.1995, 32, 195.10.1002/chin.199538003Search in Google Scholar

[8] C. Dion, S. Obbade, E. Raekelboom, F. Abraham, M. Saadi, Synthesis, crystal structure, and comparison of two new uranyl vanadate layered compounds: M6(UO2)5(VO4)2O5 with M=Na, K. J. Solid State Chem.2000, 155, 342.10.1006/jssc.2000.8923Search in Google Scholar

[9] S. Obbade, C. Renard, F. Abraham, New open-framework in the uranyl vanadates A3(UO2)7(VO4)5O (A=Li, Ag) with intergrowth structure between A(UO2)4(VO4)3 and A2(UO2)3(VO4)2O. J. Solid State Chem.2009, 182, 413.10.1016/j.jssc.2008.10.019Search in Google Scholar

[10] E. V. Suleimanov, N. V. Somov, E. V. Chuprunov, E. F. Mayatskikh, W. Depmeier, E. V. Alekseev, A detailed study of the dehydration process in synthetic strelkinite, Na[(UO2)(VO4)]·nH2O (n=0, 1, 2). Z. Kristallogr.2012, 227, 522.10.1524/zkri.2012.1480Search in Google Scholar

[11] Y. Wang, X. Yin, Y. Zhao, Y. Gao, L. Chen, Z. Liu, D. Sheng, J. Diwu, Z. Chai, T. E. Albrecht-Schmitt, S. Wang, Insertion of trivalent lanthanides into uranyl vanadate layers and frameworks. Inorg. Chem.2015, 54, 8449.10.1021/acs.inorgchem.5b01141Search in Google Scholar PubMed

[12] G. Branche, P. Bariand, F. Chantret, R. Pouget, A. Rimsky, La vanuralite, nouveau minéral uranifère. Compt. Rend. Hebd. Séanc. Acad. Sci.1963, 256, 5374.Search in Google Scholar

[13] F. Cesbron, Nouvelles données sur la vanuralite. Existence de la méta-vanuralite. Bull. Soc. Fr. Minéral. Cristallogr.1970, 93, 242.10.3406/bulmi.1970.6459Search in Google Scholar

[14] G. Sheldrick, SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr.2015, A71, 3.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

[15] V. Petříček, M. Dušek, L. Palatinus, Crystallographic computing system jana 2006: general features. Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar

[16] V. Petříček, M. Dušek, J. Plášil, Crystallographic computing system Jana2006: solution and refinement of twinned structures. Z. Kristallogr.2016, 231, 583.10.1515/zkri-2016-1956Search in Google Scholar

[17] I. D. Brown, The chemical bond in inorganic chemistry. The bond valence model. Oxford University Press, Oxford, 2002.Search in Google Scholar

[18] P. C. Burns, R. C. Ewing, F. C. Hawthorne, The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. Can. Mineral.1997, 35, 1551.Search in Google Scholar

[19] O. C. Gagné, F. C. Hawthorne, Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr.2015, B71, 562.10.1107/S2052520615016297Search in Google Scholar PubMed PubMed Central

[20] S. V. Krivovichev, Topological complexity of crystal structures: quantitative approach. Acta Crystallogr.2012, A68, 393.10.1107/S0108767312012044Search in Google Scholar PubMed

[21] S. V. Krivovichev, Structural complexity of minerals: information storage and processing in the mineral world. Mineral. Mag.2013, 77, 275.10.1180/minmag.2013.077.3.05Search in Google Scholar

[22] V. A. Blatov, A. P. Shevchenko, D. M. Proserpio, Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des.2014, 14, 3576.10.1021/cg500498kSearch in Google Scholar

[23] P. Piret, J. P. Declercq, D. Wauters-Stoop, Structure cristalline de la sengiérite. Bull. Minéral.1980, 103, 176.10.3406/bulmi.1980.7393Search in Google Scholar

[24] D. E. Appleman, H. T. Evans Jr, The crystal structures of synthetic anhydrous carnotite, K2(UO2)2V2O8, and its cesium analogue, Cs2(UO2)2V2O8. Amer. Mineral.1965, 50, 825.Search in Google Scholar

[25] K. Mereiter, Crystal structure refinement of two francevillites, (Ba,Pb)[(UO2)2V2O8]·5H2O. N. Jahrb. Mineral. Monatsh.1986, 1986, 552.Search in Google Scholar

[26] P. C. Burns, U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. Can. Mineral.2005, 43, 1839.10.2113/gscanmin.43.6.1839Search in Google Scholar

[27] A. J. Lussier, R. A. K. Lopez, P. C. Burns, A revised and expanded structure hierarchy of natural and synthetic hexavalent uranium compounds. Can. Mineral.2016, 54, 177.10.3749/canmin.1500078Search in Google Scholar

[28] F. C. Hawthorne, M. Schindler, Understanding the weakly bonded constituents in oxysalt minerals. Z. Kristallogr.2008, 223, 41.10.1524/zkri.2008.0003Search in Google Scholar

[29] M. Schindler, F. C. Hawthorne, The stereochemistry and chemical composition of interstitial complexes in uranyl–oxysalt minerals. Can. Mineral.2008, 46, 467.10.3749/canmin.46.2.467Search in Google Scholar

[30] F. C. Hawthorne, A bond-topological approach to theoretical mineralogy: crystal structure, chemical composition and chemical reactions. Phys. Chem. Miner.2012, 39, 841.10.1007/s00269-012-0538-4Search in Google Scholar

[31] I. D. Brown, Recent developments in the methods and applications of the bond valence model. Chem. Rev.2009, 109, 6858.10.1021/cr900053kSearch in Google Scholar PubMed PubMed Central

[32] B. Lafuente, R. T. Downs, H. Yang, N. Stone, The power of databases: the RRUFF project, in Highlights in Mineralogical Crystallography, (Eds. T. Armbruster and R. M. Danisi) W. De Gruyter, Berlin, Germany, p. 1, 2015.10.1515/9783110417104-003Search in Google Scholar

[33] F. Dal Bo, F. Hatert, M. Baijot, S. Philippo, Crystal structure of arsenuranospathite from Rabejac, Lodeve, France. Eur. J. Mineral.2015, 27, 589.10.1127/ejm/2015/0027-2461Search in Google Scholar

[34] J. Plášil, M. Dušek, M. Novák, J. Čejka, I. Císařová, R. Škoda, Sejkoraite-(Y), a new member of the zippeite group containing trivalent cations from Jáchymov (St. Joachimsthal), Czech Republic: description and crystal structure refinement. Amer. Miner.2011, 96, 983.10.2138/am.2011.3713Search in Google Scholar

[35] P. Piret, M. Deliens, J. Piret-Meunier, La francoisite-(Nd), nouveau phosphate d’uranyle et de terre rares; proprietes et structures cristalline. Bull. Minéral.1988, 111, 443.10.3406/bulmi.1988.8091Search in Google Scholar

[36] F. Dal Bo, F. Hatert, S. Philippo, A new uranyl phosphate sheet in the crystal structure of furongite. Eur. J. Mineral.2017, in press. DOI: 10.1127/ejm/2017/0029-2629.10.1127/ejm/2017/0029-2629Search in Google Scholar

[37] S. V. Krivovichev, Hydrogen bonding and structural complexity of the Cu3(AsO4)(OH)3 polymorphs (clinoclase, gilmarite): a theoretical study. J. Geosci.2017, 62, 79.10.3190/jgeosci.231Search in Google Scholar


Supplemental Material:

The online version of this article (DOI: https://doi.org/10.1515/zkri-2017-2054) offers supplementary material, available to authorized users.


Received: 2017-2-22
Accepted: 2017-5-16
Published Online: 2017-6-29
Published in Print: 2017-11-27

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2017-2054/html
Scroll to top button