Single-crystal neutron diffraction on γ-LiAlO2: structure determination and estimation of lithium diffusion pathway
-
Dennis Wiedemann
, Sylvio Indris
Abstract
γ-Lithium aluminum oxide is a paradigmatic example of an ultraslow lithium ion conductor. This characteristic plays a crucial role in its proposed and actual applications. Herein, we report on the outcome of single-crystal neutron diffraction studies at ambient and high temperature. Careful evaluation confirms the commonly assumed room-temperature structure as derived by powder neutron diffraction in 1965. At 1043 K, a split of the lithium position hints at the onset of intrinsic diffusion. Analysis of the negative scattering-length density using the maximum-entropy method (MEM) indicates a preference for a strongly curved diffusion pathway traversing octahedral voids between adjacent lithium sites. These results help to understand ultraslow lithium diffusion in well-ordered ionic solids on the microscopic scale and, ultimately, to establish structure–property relationships.
Acknowledgments
Financial support by the Deutsche Forschungsgemeinschaft (FOR 1277: “Mobilität von Lithiumionen in Festkörpern [molife]”) is gratefully acknowledged. This work is based on experiments performed at the RESI instrument operated by FRM II and the HEiDi instrument operated by RWTH Aachen and Forschungszentrum Jülich within the JARA-FIT initiative at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Garching, Germany.
References
[1] H. Cao, B. Xia, Y. Zhang, N. Xu, LiAlO2-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics2005, 176, 911.10.1016/j.ssi.2004.12.001Search in Google Scholar
[2] L. Li, Z. Chen, Q. Zhang, M. Xu, X. Zhou, H. Zhu, K. Zhang, A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. J. Mater. Chem. A2015, 3, 894.10.1039/C4TA05902FSearch in Google Scholar
[3] M. A. K. L. Dissanayake, Nano-composite solid polymer electrolytes for solid state ionic devices. Ionics2004, 10, 221.10.1007/BF02382820Search in Google Scholar
[4] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K. H. Ploog, Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature2000, 406, 865.10.1038/35022529Search in Google Scholar PubMed
[5] H. Takahashi, N. Yamazaki, T. Watanabe, K. Suzuki (Nippon Chemicals Industrial Co.): Gamma Lithium Aluminate Product and Process of Making. US-6,290,928, 2001.Search in Google Scholar
[6] B. Rasneur, Tritium breeding material: γ-LiAlO2. Fusion Technol.1985, 8, 1909.10.13182/FST85-A40040Search in Google Scholar
[7] M. Übeyli, Impact of solid breeder materials on tritium breeding in a hybrid reactor. J. Fusion Energy2006, 25, 99.10.1007/s10894-006-9007-8Search in Google Scholar
[8] Z. Weyberg, Ueber einige spinellartige Verbindungen. Centralbl. Mineral., Geol. Paläontol.1906, 645.Search in Google Scholar
[9] E. F. Bertaut, A. Delapalme, G. Bassi, A. Durif-Varambon, J.-C. Joubert, Structure de γ-LiAlO2. Bull. Soc. Fr. Minéral. Cristallogr.1965, 88, 103.10.3406/bulmi.1965.5809Search in Google Scholar
[10] M. Marezio, The crystal structure and anomalous dispersion of γ-LiAlO2. Acta Crystallogr.1965, 19, 396.10.1107/S0365110X65003511Search in Google Scholar
[11] S. Indris, P. Heitjans, R. Uecker, T. Bredow, Local electronic structure in a LiAlO2 single crystal studied with 7Li NMR spectroscopy and comparison with quantum chemical calculations. Phys. Rev. B: Condens. Matter Mater. Phys.2006, 74, 245120.10.1103/PhysRevB.74.245120Search in Google Scholar
[12] S. Indris, P. Heitjans, R. Uecker, B. Roling, Li ion dynamics in a LiAlO2 single crystal studied by 7Li NMR spectroscopy and conductivity measurements. J. Phys. Chem. C2012, 116, 14243.10.1021/jp3042928Search in Google Scholar
[13] J. de Meulenaer, H. Tompa, The absorption correction in crystal structure analysis. Acta Crystallogr.1965, 19, 1014.10.1107/S0365110X65004802Search in Google Scholar
[14] P. J. Becker, P. Coppens, Extinction within the limit of validity of the darwin transfer equations. I. General formalism for primary and secondary extinction and their applications to spherical crystals. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.1974, 30, 129.10.1107/S0567739474000337Search in Google Scholar
[15] P. J. Becker, P. Coppens, Extinction within the limit of validity of the darwin transfer equations. II. Refinement of extinction in spherical crystals of SrF2 and LiF. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.1974, 30, 148.10.1107/S0567739474000349Search in Google Scholar
[16] B. Pedersen, RESI: Thermal neutron single crystal diffractometer. J. Large-Scale Res. Facil.2015, 1, A4.10.17815/jlsrf-1-23Search in Google Scholar
[17] A. J. M. Duisenberg, L. M. J. Kroon-Batenburg, A. M. M. Schreurs, An intensity evaluation method: EVAL-14. J. Appl. Crystallogr.2003, 36, 220.10.1107/S0021889802022628Search in Google Scholar
[18] A. L. Spek, Structure validation in chemical crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr.2009, 65, 148.10.1107/S090744490804362XSearch in Google Scholar
[19] G. M. Sheldrick, A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr.2008, 64, 112.10.1107/S0108767307043930Search in Google Scholar
[20] V. Petříček, M. Dušek, L. Palatinus, Crystallographic computing system JANA2006: general features. Z. Kristallogr. – Cryst. Mater.2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar
[21] M. Meven, A. Sazonov, HEiDi: single crystal diffractometer at hot source. J. Large-Scale Res. Facil.2015, 1, A7.10.17815/jlsrf-1-20Search in Google Scholar
[22] K. Momma, T. Ikeda, A. A. Belik, F. Izumi, Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting. Powder Diffr.2013, 28, 184.10.1017/S088571561300002XSearch in Google Scholar
[23] K. Brandenburg, H. Putz, Diamond 3.2 – Crystal and Molecular Structure Visualization, Crystal Impact, Bonn (Germany) 2014.Search in Google Scholar
[24] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr.2011, 44, 1272.10.1107/S0021889811038970Search in Google Scholar
[25] M. Berglund, M. E. Wieser, Isotopic compositions of the elements 2009 (IUPAC Technical Report). Pure Appl. Chem.2011, 83, 397.10.1351/PAC-REP-10-06-02Search in Google Scholar
[26] V. F. Sears, Scattering lengths for neutrons, in International Tables for Crystallography, Vol. C, 3rd ed. (Ed. E. Prince), Kluwer Academic Publishers, Dordrecht (Netherlands) pp. 444, 2004.Search in Google Scholar
[27] S. Konishi, H. Ohno, Electrical conductivity of polycrystalline Li2SiO3 and γ-LiAlO2. J. Am. Ceram. Soc.1984, 67, 418.10.1111/j.1151-2916.1984.tb19727.xSearch in Google Scholar
[28] F. Izumi, Beyond the ability of Rietveld analysis: MEM-based pattern fitting. Solid State Ionics2004, 172, 1.10.1016/j.ssi.2004.04.023Search in Google Scholar
[29] A. Senyshyn, H. Boysen, R. Niewa, J. Banys, M. Kinka, Y. Burak, V. Adamiv, F. Izumi, I. Chumak, H. Fuess, High-temperature properties of lithium tetraborate Li2B4O7. J. Phys. D: Appl. Phys.2012, 45, 175305.10.1088/0022-3727/45/17/175305Search in Google Scholar
[30] M. Yashima, Diffusion pathway of mobile ions and crystal structure of ionic and mixed conductors – a brief review. J. Ceram. Soc. Jpn.2009, 117, 1055.10.2109/jcersj2.117.1055Search in Google Scholar
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- SrPt2Al2 – A (3+2)D-incommensurately modulated variant of the CaBe2Ge2 type structure
- The modulated structure of intermediate-valent CeCoGa
- Organic and Metalorganic Crystal Structures
- Serendipitous compositional and structural diversity in urotropine adducts of binary cadmium xanthates
- Crystal structures of 2-[5-nitrothien-2-yl)- CH=N–NR–CO(CH2)n]thiophene compounds (R = H or Me; n = 0 or 1)
- Molecular structure studies of novel bronchodilatory-active 4-azafluorenes
- Letter
- Single-crystal neutron diffraction on γ-LiAlO2: structure determination and estimation of lithium diffusion pathway
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- SrPt2Al2 – A (3+2)D-incommensurately modulated variant of the CaBe2Ge2 type structure
- The modulated structure of intermediate-valent CeCoGa
- Organic and Metalorganic Crystal Structures
- Serendipitous compositional and structural diversity in urotropine adducts of binary cadmium xanthates
- Crystal structures of 2-[5-nitrothien-2-yl)- CH=N–NR–CO(CH2)n]thiophene compounds (R = H or Me; n = 0 or 1)
- Molecular structure studies of novel bronchodilatory-active 4-azafluorenes
- Letter
- Single-crystal neutron diffraction on γ-LiAlO2: structure determination and estimation of lithium diffusion pathway