Variations in the intermolecular interactions in (E) benzaldehyde 7-chloro-1-methyl- 4H-quinolinyl-4-ylidene-hydrazone and seven halo derivatives
-
Marcelle de L.F. Bispo
Abstract
Eight crystal structures are reported here: substituted (E) benzaldehyde 7-chloro-1-methyl-4H-quinolinyl-4-ylidene-hydrazones, 1, [substituted benzaldehyde: XYC6H4CHO: X,Y=H,H; 2-F,H; 3-F,H; 4-F,H; 3-Cl,H; 4-Cl,H; 2-Br,H and 2,3-Cl2]. None of the molecules, 1, are overall planar: angles between the phenyl and and quinolinyl rings vary from <5°, for (1:X,Y=3-F,H; 4-F,H; 3-Cl,H and 2,3-Cl2) to 15–16° for (1: X,Y=H,H and 4-Cl,H). The supramolecular arrangements in the parent compound (1: X=Y=H) are generated solely from C–Z···π (Z=H and Cl) interactions, while the supramolecular arrangements for each of the halo derivatives arise from combinations of π···π and some of C–Z···π (Z=H, F, Cl) and C–H···Z (Z=N, F, Cl) intermolecular interactions: in each case different assemblies result. While there are possibilities for π(quin)···π(quin), π(quin)···π(phen) and π(phen)···π(phen) interactions [quin and phen refer to the quinolinyl and phenyl moieties], only compounds (1: X,Y=2,3-Cl2) and (1: X,Y=4-Cl,H) exhibit all three, (1: X,Y=2-Br,H) just π(quin)···π(quin) of the three, and in the others two of the three. All the halo derivatives exhibit π(quin)···π(quin) interactions. It is argued that steric hindrance between molecules, generated by the halo substituents, prevents the halo derivatives from adopting the packing arrangements of the parent compound, (1: X,Y=H,H). As there appears to be no reason, steric or otherwise, why compound (1: X,Y=H,H) cannot utiilize π···π interactions, it is apparent that the packing of molecules via the C–Y···π interactions is the most stable.
Acknowledgments
The use of the NCS crystallographic service at Southampton and the valuable assistance of the staff there are gratefully acknowledged. JLW thanks FAPERJ and CNPq, Brazil for support.
References
[1] M. de L. F. Bispo, C. C. de Alcantara, S. M. S. V. Wardell, M. V. N. de Souza, J. L. Wardell, Structures of three methoxy-substituted benzaldehyde 7-chloro-1-methyl-4H-quinolinyl-4-ylidene-hydrazones: variations in π···π interactions. Z. Kristallogr.2015, 230, 519.10.1515/zkri-2015-1848Search in Google Scholar
[2] R. A. Howie, M. V. N. de Souza, M. L. Ferreira, C. R. Kaiser, J. L. Wardell, S. M. S. V. Wardell, Structures of arylaldehyde 7-chloroquinoline-4-hydrazones:supramolecular arrangements derived from N–H···N, C–H···X (X=N, O, or π) and π···π interactions. Z. Kristallogr. 2010, 225, 440.10.1524/zkri.2010.1291Search in Google Scholar
[3] M. L. Ferreira, M. V. N. de Souza, S. M. S. V. Wardell, E. R. T. Tiekink, J. L. Wardell, 7-Chloro-4-[(E)-2-(3,4,5-trimethoxybenzylidene)hydrazin-1-yl]quinoline. Acta Crystallogr. 2012, E68, o1214.10.1107/S1600536812012755Search in Google Scholar PubMed PubMed Central
[4] M. V. N. de Souza, M. L. Ferreira, S. M. S. V. Wardell, E. R. T. Tiekink, J. L. Wardell, 7-Chloro-4-[(E)-2-(2,5-dimethoxybenzylidene)hydrazin-1-yl]quinoline. Acta Crystallogr. 2012, E68, o1244.10.1107/S1600536812012871Search in Google Scholar PubMed PubMed Central
[5] M. L. Ferreira, M. V. N. de Souza, R. A. Howie, E. R. T. Tiekink, J. L.Wardell, S. M. S. V. Wardell, 3-[(E)-(7-Chloro-4-quinolyl)hydrazonomethyl]benzonitrile monohydrate. Acta Crystallogr. 2009, E65, o3239.10.1107/S1600536809050120Search in Google Scholar PubMed PubMed Central
[6] M. V. N. de Souza, R. A. Howie, E. R. T. Tiekink, J. L. Wardell, S. M. S. V. Wardell, C. R. Kaiser, 7-Chloro-4-[(E)-2-(2-methoxybenzylidene)hydrazin-1-yl]quinoline monohydrate. Acta Crystallogr. 2010, E66, o698.10.1107/S1600536810006586Search in Google Scholar PubMed PubMed Central
[7] M. V. N. de Souza, R. A. Howie, E. R. T. Tiekink, J. L. Wardell, S. M. S. V. Wardell, 7-Chloro-4- [(E)-N-(4-fluorobenzylidene)hydrazinyl]quinoline monohydrate. Acta Crystallogr. 2010, E66, o152.10.1107/S1600536809053367Search in Google Scholar PubMed PubMed Central
[8] M. D. Ferreira, M. V. N. de Souza, R. A. Howie, E. R. T. Tiekink, J. L. Wardell, S. M. S. V. Wardell, 7-Chloro-4-[(E)-2-(4-methoxybenzylidene)hydrazin-1-yl]quinoline monohydrate. Acta Crystallogr. 2010, E66, o696.10.1107/S1600536810006598Search in Google Scholar PubMed PubMed Central
[9] M. L. Ferreira, M.V. N. de Souza, R. A. Howie, E. R. T. Tiekink, J. L. Wardell, S. M. S.V. Wardell, 3-[(E)-(7-Chloro-4-quinolyl)hydrazonomethyl]benzonitrile monohydrate. Acta Crystallogr. 2009, E65, o3239.10.1107/S1600536809050120Search in Google Scholar
[10] M. V. N. de Souza, T. C. M. Noguiera, S. M. S. V. Wardell, J. L. Wardell, Crystal structures of (E)-2-(2-benzylidenehydrazinyl)quinoxalines: persistent N–H···N intermolecular hydrogen bonds but variable π···π interactions. Z. Kristallogr. 2014, 229, 587.10.1515/zkri-2014-1769Search in Google Scholar
[11] T. C. M. Noguiera, A. C. Pinheiro, M. V. N. de Souza, J. L. Wardell, E. R. T. Tiekink, 2-[(E)-2-(3,4-Dichlorobenzylidene)-hydrazin-1-yl]quinoxaline. Acta Crystallogr. 2014, E70, o125.10.1107/S1600536814000415Search in Google Scholar PubMed PubMed Central
[12] L. R. Gomes, J. N. Low, A. S. M. C. Rodrigues, J. L. Wardell, M. V. N. de Souza, T. C. M. Noguiera, A. C. Pinheiro, Comparison of the structure of (E)-2-(2-benzylidene)hydrazinylidene)quinoxaline with those of its chloro- and bromobenzylidene analogues. Acta Crystalllogr. 2013, C69, 920.10.1107/S0108270113015370Search in Google Scholar
[13] F. A. R. Rodrigues, I. S. Bomfim, B. C. Cavalcanti, C. O. Pessoa, J. L. Wardell, S. M. S. V. Wardell, A. C. Pinheiro, C. R. Kaiser, T. C. M. Nogueira, J. N. Low, L. R. Gomes, M. V. N. de Souza, Design, synthesis and biological evaluation of (E)-2-(2-arylhydrazinyl)quinoxalines, a promising and potent new class of anticancer agents. Bioorg. Med. Chem. Letters2014, 24, 934.10.1016/j.bmcl.2013.12.074Search in Google Scholar PubMed
[14] E. B. Lindgren, J. D. Yoneda, K. Z. Leal, A. F. Nogueira, T. R. A. Vasconcelos, J. L. Wardell, S. M. S. V. Wardell, Structures of hydrazones, (E)-2-(1,3-benzothiazolyl)-NH-N=CHAr, [Ar=4- (pyridin-2-yl)phenyl, pyrrol-2-yl, thien-2-yl and furan-2-yl]: Difference in conformations and intermolecular hydrogen bonding. J. Mol. Struct. 2013, 1036, 19.10.1016/j.molstruc.2012.09.058Search in Google Scholar
[15] A. F. Nogueira, T. R. A. Vasconcelos, J. L. Wardell, S. M. S. V. Wardell, Crystal structures of hydrazones, 2-(1,3-benzothiazolyl)-NH-N=CH-Ar, prepared from arenealdehydes and 2-hydrazinyl- 1,3-benzothiazole. Z. Kristallogr.2011, 226, 846.10.1524/zkri.2011.1424Search in Google Scholar
[16] S. A. Carvalho, W. T. A. Harrison, C. A. M. Fraga, E. F. da Silva, J. L. Wardell, S. M. S. V. Wardell, 5-Phenyl-2-(benzalhydrazonyl)-1,3,4-thiadiazoles, potential trypanocidal agents: consistent dimer formation via N–H···N intermolecular hydrogen bonds. Z. Kristallogr.2009, 224, 598.10.1524/zkri.2009.1203Search in Google Scholar
[17] CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. 2011.Search in Google Scholar
[18] G. M. Sheldrick, SADABS Version 2007/2, Bruker AXS Inc., Madison, WI. 2007.Search in Google Scholar
[19] L. J. Farrugia, ORTEP-3 for Windows – a version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565.10.1107/S0021889897003117Search in Google Scholar
[20] Mercury 3.3. Cambridge Crystallographic Data Centre, UK, 2013.Search in Google Scholar
[21] G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. 2008, A64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed
[22] A. L. Spek, Single-crystal structure validation with the program PLATON. J. Appl.Crystallogr. 2003, 36, 7.10.1107/S0021889802022112Search in Google Scholar
[23] G. R. Desiraju, Crystal engineering: A holistic view. Angew.Chem., Int. Ed.2007, 46, 8342.10.1002/anie.200700534Search in Google Scholar PubMed
[24] E. R. T. Tiekink, Crystal engineering, in Supramolecular Chemistry: from Molecules to Nanomaterials, (Eds. J. W. Steed and P. A. Gale) John Wiley & Sons Ltd, Chichester, UK, p. 2791, 2012.Search in Google Scholar
[25] The importance of π-Interactions in Crystal Engineering: Frontiers in Crystal Engineering, 2nd Edition, E. R. T. Tiekink, J. Zukerman-Schpector, Eds Wiley, Singapore, 2012.Search in Google Scholar
[26] J. Bernstein, R. E. Davis, L. Shimoni, N.-L. Chang, Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555.10.1002/anie.199515551Search in Google Scholar
Supplemental Material:
The online version of this article (DOI: 10.1515/zkri-2015-1893) offers supplementary material, available to authorized users.
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Single-crystal X-ray diffraction study of Cs2Er[Si6O14]F and Cs2Er[Si4O10]F
- Rb2Ca2Si3O9: the first rubidium calcium silicate
- Organic and Metalorganic Crystal Structures
- Variations in the intermolecular interactions in (E) benzaldehyde 7-chloro-1-methyl- 4H-quinolinyl-4-ylidene-hydrazone and seven halo derivatives
- Crystal structures of 3-(2H-1,3-benzodioxol-5-ylmethyl)-2-(m- and p-nitrophenyl)-1,3-thiazolidin-4-ones: different roles of the oxygen atoms
- Crystal structure and Hirshfeld analysis of the kryptoracemate: bis(mefloquinium) chloride p-fluorobenzenesulphonate
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- Single-crystal X-ray diffraction study of Cs2Er[Si6O14]F and Cs2Er[Si4O10]F
- Rb2Ca2Si3O9: the first rubidium calcium silicate
- Organic and Metalorganic Crystal Structures
- Variations in the intermolecular interactions in (E) benzaldehyde 7-chloro-1-methyl- 4H-quinolinyl-4-ylidene-hydrazone and seven halo derivatives
- Crystal structures of 3-(2H-1,3-benzodioxol-5-ylmethyl)-2-(m- and p-nitrophenyl)-1,3-thiazolidin-4-ones: different roles of the oxygen atoms
- Crystal structure and Hirshfeld analysis of the kryptoracemate: bis(mefloquinium) chloride p-fluorobenzenesulphonate