Study of poly (acrylamide/sodium alpha-olefin sulfonate/tea saponin)-polyhedrol oligomerie silsesquioxan (POSS) nanomaterial (FAP)
-
Wenwei Wu
Abstract
Emerging carbon capture, utilization, and storage (CCUS) technologies have driven the development of advanced nanocomposite materials. In this study, a novel polyhedral oligomeric silsesquioxane (POSS)-based nanomaterial, referred to as FAP, was synthesized using acrylamide, sodium α-olefin sulfonate, and tea saponin as monomers. The structure of the material was confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and silicon nuclear magnetic resonance spectroscopy (29Si NMR), revealing a well-defined cage-like cubic architecture. TEM images clearly displayed the cage-like structure of the POSS material in FAP, while energy dispersive spectroscopy (EDS) confirmed the presence of silicon (Si) element. Thermogravimetric analysis (TGA) showed that the incorporation of POSS materials improved the thermal resistance of FAP. The nanomaterials significantly improved the foaming performance and foam stability. The foam generated by FAP reached a height of 480 mL, with a half-life of 10 h under conditions of 120 °C and a salinity of 100,000 mg L−1, showing excellent properties. Furthermore, the foam was regenerable in the presence of 20 % kerosene and maintained good foaming performance. Microscopic mechanism analysis indicated that the POSS nanomaterials compressed the electrical double layer of the polymer, reduced the particle size, increased the liquid film thickness, and markedly improved the foam stability. Under the influence of activators, the gel viscosity of FAP exceeded 100 mPa s, which significantly improved the underground sealing efficiency of CO2. The novel nanocomposite material exhibited integrated capabilities for CO2 foaming, foam stabilization, and storage. The optimal concentration of the FAP foaming agent was 0.75 %, resulting in a 32.75 % increase in recovery efficiency, a resistance factor of 18.9, and a CO2 storage rate of 12.59 %. The development of this nanocomposite material provides technological support for effectively mitigation of CO2 channeling during CO2 flooding and promotes the wider application of CO2 flooding technology.
Funding source: National Key R&D Program of China
Award Identifier / Grant number: 2022YFE0206800
Acknowledgments
The research is supported by the open fund for Sinopec’s key laboratory of carbon capture, utilization and storage.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: All other authors state no conflict of interest.
-
Research funding: Open fund for Sinopec’s key laboratory of carbon capture, utilization and storage, National Key R&D Program of China (2022YFE0206800).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Faruque Hasan, M. M.; First, E. L.; Boukouvala, F.; Floudas, C. A. Multi-Scale Framework for CO2 Capture, Utilization,and Sequestration: CCUS and CCU. Comput. Chem. Eng. 2015, 81, 2–21. https://doi.org/10.1016/j.compchemeng.2015.04.034.Search in Google Scholar
2. Wang, F.; Liao, G. Z.; Su, C. M.; Wang, F.; Ma, J. G.; Yang, Y. Z. Carbon Emission Reduction Accounting Method for a CCUS-EOR Project. Petrol. Explor. Dev. 2023, 50 (4), 989–1000. https://doi.org/10.1016/S1876-3804(23)60444-6.Search in Google Scholar
3. Heidari, P.; Kharrat, R.; Alizadeh, N.; Ghazanfari, M. H. A Comparison of WAG and SWAG Processes: Laboratory and Simulation Studies. Energy Sources Part A 2013, 35 (23), 2225–2232. https://doi.org/10.1080/15567036.2010.532189.Search in Google Scholar
4. Zhang, Y.; Huang, S.; Luo, P. Coupling Immiscible CO2 Technology and Polymer Injection to Maximize EOR Performance for Heavy Oils. J. Can. Petrol. Technol. 2010, 49 (5), 25–33. https://doi.org/10.2118/137048-pa.Search in Google Scholar
5. Hu, Y. L.; Hao, M. Q.; Chen, G. L.; Sun, R. Y.; Li, S. Technologies and Practice of CO2 Flooding and Sequestration in China. Petrol. Explor.Dev. 2019, 46 (4), 753–766. https://doi.org/10.1016/S1876-3804(19)60233-8.Search in Google Scholar
6. Wang, G. F. Carbon Dioxide Capture, Enhanced-Oil Recovery and Storage Technology and Engineering Practice in Jilin Oilfield, NE China. Petrol. Explor.Dev. 2023, 50 (1), 245–254. https://doi.org/10.1016/S1876-3804(22)60384-7.Search in Google Scholar
7. Song, X. M.; Wang, F.; Ma, D. S.; Gao, M.; Zhang, Y. H. Progress and Prospect of Carbon Dioxide Capture, Utilization and Storage in CNPC Oilfields. Petrol. Explor.Dev. 2023, 50 (1), 229–244. https://doi.org/10.1016/S1876-3804(22)60383-5.Search in Google Scholar
8. Liao, G. Z.; He, D. B.; Wang, G. F.; Wang, L. G.; Wang, Z. M.; Su, C. M.; Qin, Q.; Bai, J. H.; Hu, Z. Q.; Huang, Z. J.; Wang, J. F.; Wang, S. Z. Discussion on the Limit Recovery Factor of Carbon Dioxide Flooding in a Permanent Sequestration Scenario. Petrol. Explor.Dev. 2022, 49 (6), 1463–1470. https://doi.org/10.1016/S1876-3804(23)60364-7.Search in Google Scholar
9. Wang, F. K.; Lu, X. H.; He, C. B. Some Recent Developments of Polyhedral Oligomeric Silsesquioxane (POSS)-based Polymeric Materials. J. Mater. Chem. 2011, 21 (9), 2775–2782. https://doi.org/10.1039/c0jm02785e.Search in Google Scholar
10. Tanaka, K.; Chujo, Y. Advanced Functional Materials Based on Polyhedral Oligomeric Silsesquioxane (POSS). J. Mater. Chem. 2012, 22 (5), 1733–1746. https://doi.org/10.1039/c1jm14231c.Search in Google Scholar
11. Janeta, M.; John, L.; Ejfler, J.; Lis, T.; Szafert, S. Multifunctional Imine-POSS as Uncommon 3D Nanobuilding Blocks for Supramolecular Hybrid Materials: Synthesis, Structural Characterization, and Properties. Dalton Trans. 2016, 45 (31), 12312–12321. https://doi.org/10.1039/C6DT02134D.Search in Google Scholar
12. Zhang, Z. P.; Liang, G. Z.; Lu, T. L. Synthesis and Characterization of Cageocta (Aminopropylsilsesquioxane). J. Appl. Polym. Sci. 2007, 103 (4), 2608–2614. https://doi.org/10.1002/app.25304.Search in Google Scholar
13. Liu, N.; Wei, K.; Wang, L.; Zheng, S. X. Organic-inorganic Polyimides with Double Decker Silsesquioxane in the Main Chains. Polym. Chem. 2016, 7 (5), 1158–1167. https://doi.org/10.1039/c5py01827g.Search in Google Scholar
14. Cao, J.; Fan, H.; Li, B. G.; Zhu, S. P. Synthesis and Evaluation of Double-Decker Silsesquioxanes as Modifying Agent for Epoxy Resin. Polymer 2017, 124, 157–167. https://doi.org/10.1016/j.polymer.2017.07.056.Search in Google Scholar
15. Laird, M.; Lee, A. V. D.; Dumitrescu, D. G.; Carcel, C.; Ouali, O.; Bartlett, J. R.; Unno, M.; Ma, M. W. C. Organometallics 2020, 39 (10), 1896–1906. https://doi.org/10.1021/acs.organomet.0c00119.Search in Google Scholar
16. Jeon, H. G.; Mather, P. T.; Haddsd, T. S. Polym. Int. 2000, 49 (5), 453–457. https://doi.org/10.1002/(SICI)1097-0126(200005)49:5<453::AID-PI332>3.0.CO;2-H.10.1002/(SICI)1097-0126(200005)49:5<453::AID-PI332>3.0.CO;2-HSearch in Google Scholar
17. Bai, J. W.; Zhang, Y. N.; Zhang, W. P.; Ma, X. F.; Zhu, Y. W.; Zhao, X. H.; Fu, Y. J. Appl. Surf. Sci. 2020, 511, 145506. https://doi.org/10.1016/j.apsusc.2020.145506.Search in Google Scholar
18. Mheibesh, Y.; Hethnawi, A.; Sessarego, S.; Manasrah, A. D.; Nassar, N. N. Energy &Fuel. 2023, 37 (22), 17187–17202. https://doi.org/10.1021/acs.energyfuels.3c02188.Search in Google Scholar
19. Masalova, I.; Tshilumbu, N. N.; Mamedou, E.; Kharatyan, E.; Katende, J. K. J. Mol. Liq. 2019, 279, 351–360. https://doi.org/10.1016/j.molliq.2019.01.104.Search in Google Scholar
20. Xie, G.; Luo, P. Y.; Deng, M. Y.; Su, J. L.; Wang, Z.; Gong, R.; Xie, J. N.; Deng, S. J.; Duan, Q. Appl. Clay Sci. 2017, 136, 43–50. https://doi.org/10.1016/j.clay.2016.11.005.Search in Google Scholar
21. Duan, X. G.; Hou, J. R.; Cheng, T. T.; Li, S.; Ma, Y. F. J. Petrol. Sci. Eng. 2014, 122, 428–438. https://doi.org/10.1016/j.petrol.2014.07.042.Search in Google Scholar
22. Zou, W. J.; Gong, L.; Huang, J.; Pan, M. F.; Lu, Z. Z.; Sun, C. B.; Zeng, H. B. Miner. Eng. 2019, 141, 105841. https://doi.org/10.1016/j.mineng.2019.105841.Search in Google Scholar
23. Zhang, D. W.; Chen, Z. X.; Ren, L.; Meng, X. C.; Gu, W. G. Polym. Bull. 2022, 79, 179–192. https://doi.org/10.1007/s00289-020-03497-6.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- Amino acid Gemini surfactants: a review on their synthesis, properties and applications
- Physical Chemistry
- Study on the synthesis and properties of Gemini surfactant with ester spacers
- Branched-chain anionic surfactants with same hydrophobic tail architecture: effects of hydrophilic headgroups
- Comparative study of organic co-solvents on micellar and surface behavior of ionic surfactants: effects of DMSO, acetonitrile, and 1-propanol
- Applications
- Polycarbinol-siloxane surfactants: synthesis, characterization, fire suppression evaluation and foaming-defoaming properties
- Study of poly (acrylamide/sodium alpha-olefin sulfonate/tea saponin)-polyhedrol oligomerie silsesquioxan (POSS) nanomaterial (FAP)
- Exploring the interactions in the mixtures of cationic Gemini and biologically significant anionic surfactant sodium cholate in presence of drug proponolol hydrochloride
- Eberconazole nitrate–loaded spanlastics: nanocarriers for topical delivery system
- Coconut oil refinery waste utilization in sustainable development of biodegradable betaine surfactant
Articles in the same Issue
- Frontmatter
- Review Article
- Amino acid Gemini surfactants: a review on their synthesis, properties and applications
- Physical Chemistry
- Study on the synthesis and properties of Gemini surfactant with ester spacers
- Branched-chain anionic surfactants with same hydrophobic tail architecture: effects of hydrophilic headgroups
- Comparative study of organic co-solvents on micellar and surface behavior of ionic surfactants: effects of DMSO, acetonitrile, and 1-propanol
- Applications
- Polycarbinol-siloxane surfactants: synthesis, characterization, fire suppression evaluation and foaming-defoaming properties
- Study of poly (acrylamide/sodium alpha-olefin sulfonate/tea saponin)-polyhedrol oligomerie silsesquioxan (POSS) nanomaterial (FAP)
- Exploring the interactions in the mixtures of cationic Gemini and biologically significant anionic surfactant sodium cholate in presence of drug proponolol hydrochloride
- Eberconazole nitrate–loaded spanlastics: nanocarriers for topical delivery system
- Coconut oil refinery waste utilization in sustainable development of biodegradable betaine surfactant