Abstract
Experimental measurements of the viscosity, density, and ultrasonic parameters of monoethanolamine (MEA) with 1-butanol, 1-pentanol, and 1-hexanol were carried out at 298.15 K. The excess molar volume (VE), viscosity change (Δη), and isentropic compressibility (ΔKs) are calculated using the viscosity, density, and ultrasonic velocity data. A polynomial equation of the Redlich-Kister type was used to fit these values. With increasing mole fraction, the viscosity, the density and the ultrasonic velocity increase. As the concentration of MEA rises, the excess molar volume falls. All VE values for MEA and 1-hexanol are positive, meaning that VE increases. At all concentrations, isentropic compressibility and viscosity change exhibit negative values.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Mandal, B. P., Kundu, M., Bandyopadhyay, S. S. Density and viscosity of aqueous solutions of (N-methyldiethanolamine + monoethanolamine), (N-methyldiethanolamine + diethanolamine), (2-amino-2-methyl-1-propanol + monoethanolamine), and (2-amino-2-methyl-1-propanol + diethanolamine). J. Chem. Eng. Data 2003, 48, 703–707; https://doi.org/10.1021/je020206a.Search in Google Scholar
2. Karunarathne, S. S., Eimer, D. A., Øi, L. E. Density, viscosity and free energy of activation for viscous flow of CO2 loaded 2-amino-2-methyl-1-propanol (AMP), monoethanol amine (MEA) and H2O mixtures. J. Mol. Liq. 2020, 311, 113286; https://doi.org/10.1016/j.molliq.2020.113286.Search in Google Scholar
3. Singha, P., Van Swaaijb, W. P. M., (Wim) Brilmanb, D. W. F. Energy efficient solvents for CO2 absorption from flue gas: vapor liquid equilibrium and pilot plant study. Energy Proc. 2013, 37, 2021–2046; https://doi.org/10.1016/j.egypro.2013.06.082.Search in Google Scholar
4. Nwaoha, C., Smith, D. W., Idem, R., Tontiwachwuthikul, P. Process simulation and parametric sensitivity study of CO2 capture from 115 MW coal–fired power plant using MEA–DEA blend. Int. J. Greenh. Gas Control 2018, 76, 1–11; https://doi.org/10.1016/j.ijggc.2018.06.006.Search in Google Scholar
5. Hartono, A., Svendsen, H. F. Density, viscosity, and excess properties of aqueous solution of diethylenetriamine (DETA). J. Chem. Thermodyn. 2009, 41, 973–979; https://doi.org/10.1016/j.jct.2008.11.012.Search in Google Scholar
6. Dey, A., Aroonwilas, A. CO2 absorption into MEA-AMP blend: mass transfer and absorber height index. Energy Proc. 2009, 1, 211–215; https://doi.org/10.1016/j.egypro.2009.01.030.Search in Google Scholar
7. Sakwattanapong, R., Aroonwilas, A., Veawab, A. Reaction rate of CO2 in aqueous MEA-AMP solution: experiment and modeling. Energy Proc. 2009, 1, 217–224; https://doi.org/10.1016/j.egypro.2009.01.031.Search in Google Scholar
8. Śpiewak, D., Krótki, A., Spietz, T., Stec, M., Więcław–Solny, L., Tatarczuk, A., Wilk, C. A. PDU -Scale experimental results of CO2 removal with amp/pz solvent. Process Eng. 2015, 36, 39–48. https://doi.org/10.1515/cpe-2015-0003.Search in Google Scholar
9. Aroonwilas, A., Veawab, A. Energy Proc. 2009, 1, 4315; https://doi.org/10.1016/j.egypro.2009.02.244.Search in Google Scholar
10. Versteeg, G. F., Van Swaaij, W. P. M. Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions. J. Chem. Eng. Data 1988, 33, 29–34; https://doi.org/10.1021/je00051a011.Search in Google Scholar
11. Aronu, U. E., Hartono, A., Svendsen, H. F. Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions. J. Chem. Thermodyn. 2012, 45, 90–99; https://doi.org/10.1016/j.jct.2011.09.012.Search in Google Scholar
12. Cleeton, C., Kvam, O., Rea, R., Sarkisov, L., De Angelis, M. G. Competitive H2S e CO2 absorption in reactive aqueous methyldiethanolamine solution: prediction with ePC-SAFT. Fluid Phase Equil. 2020, 511, 112453; https://doi.org/10.1016/j.fluid.2019.112453.Search in Google Scholar
13. Dindoruk, B., Ratnakar, R. R., Sanyal, S. Phase behavior modeling of acid-gas aqueous systems CO2, H2S, CH4, water and in-situ pH measurements in applications to wellbore integrity and top-of-line corrosion. Paper presented at the SPE Annual Technical Conference and Exhibition, Virtual. 2020. https://doi.org/10.2118/201341-MS.Search in Google Scholar
14. Santhi, N., Alamelumangai, G., Pasupathi, M. Prediction of ultrasonic velocities in pure liquids by theoretical methods at various temperatures. J. Chem. Pharmaceut. Res. 2013, 5, 117–122; https://doi.org/10.18052/www.scipress.com/ilcpa.5.1.Search in Google Scholar
15. Lee, M-J., Lin, T. K. Density and viscosity for monoethanolamine + water, + ethanol, and + 2-propanol. J. Chem. Eng. Data 1995, 40, 336–339; https://doi.org/10.1021/je00017a074.Search in Google Scholar
16. Li, Z., Zhao, D. Zhuang, Y., Yang, F., Liu, X., Chen, Y. Volumetric properties of monoethanolamine and alcohol binary mixtures at different temperatures and 0.1 MPa. J. Chem. Thermodyn. 2019, 133, 37–45; https://doi.org/10.1016/j.jct.2019.01.025.Search in Google Scholar
17. DIGulllo, R. M., Lee, R-J., Schaeffer, S. T., Brasher, L. L., Teja, A. S. Densities and viscosities of the ethanolamines. J. Chem. Eng. Data 1992, 37, 239–242. https://doi.org/10.1021/je00006a028.Search in Google Scholar
18. Blanco, A., García-Abuín, A., Gomez-Díaz, D., Navaza, J. M., Villaverde, Ó. L. Density, speed of sound, viscosity, surface tension, and excess volume of N-Ethyl-2-pyrrolidone + ethanolamine (or diethanolamine or triethanolamine) from T = (293.15 to 323.15) K. J. Chem. Eng. Data 2013, 58, 653–659; https://doi.org/10.1021/je301123j.Search in Google Scholar
19. Yasmin, M., Gupta, M. Density, viscosity, velocity and refractive index of binary mixtures of poly(ethylene glycol) 200 with ethanolamine, m-cresol and aniline at 298.15 K. J. Solut. Chem. 2011, 40, 1458–1472; https://doi.org/10.1007/s10953-011-9731-1.Search in Google Scholar
20. Karunarathne, S. S., Eimer, D. A., Jens, K. J., Øi, L. E. Density, viscosity, and excess properties of ternary aqueous mixtures of MDEA +MEA, DMEA+ MEA, and DEEA+ MEA. Fluid 2020, 5, 27–47; https://doi.org/10.3390/fluids5010027.Search in Google Scholar
21. Ali, A.,Hyder, S.and Nain, A. K. Studies on molecular interactions in binary liquid mixtures by viscosity and ultrasonic velocity measurements at 303.15 k. J. Mol. Liq. 1999, 79, 89–99; https://doi.org/10.1016/s0167-7322(98)00105-6.Search in Google Scholar
22. Sekhar, M. C., Sankar, M. G., Venkatesulu, A. Thermodynamic and theoretical study on hydrogen bonded binary mixtures of isomeric butanols with o-toluidine at T= (303.15 to 318.15) K. J. Mol. Liq. 2015, 209, 428; https://doi.org/10.1016/j.molliq.2015.04.034.Search in Google Scholar
23. Nikam, P. S., Shirsat, L. N., Hasan, M. Density and Viscosity Studies of Binary Mixtures of Acetonitrile with Methanol, Ethanol, Propan-1-ol, Propan-2-ol, Butan-1-ol, 2- mMethylpropan-1-ol, and 2-Methylpropan-2-ol at (298.15, 303.15, 308.15, and 313.15K). J Chem Eng Data 1998, 43, 732–737; https://doi.org/10.1021/je980028e.Search in Google Scholar
24. Wangler, A., Sieder, G., Ingram, T., Heilig, M., Held, C. Prediction of CO2 and H2S solubility and enthalpy of absorption in reacting Nmethyldiethanolamine/water systems with SePC-SAFT. Fluid Equil. 2018, 461, 15–27; https://doi.org/10.1016/j.fluid.2017.12.033.Search in Google Scholar
25. Sastry, N. V., Valand, M. K. Viscosities and densities for heptane +1-Pentanol, +1- hexanol, +1-Heptanol, +1-Octanol, +1-Decanol, and +1-Dodecanol at 298.15K and 308.15K. J. Chem. Eng. Data 1996, 41, 1426–1428; https://doi.org/10.1021/je9601725.Search in Google Scholar
26. Gao, H. X., Xu, B., Han, L., Luo, X., Liang, Z. W. Mass transfer performance and correlations for CO2 absorption into aqueous blended of DEEA/MEA in a random packed column. AIChE J. 2017, 63, 3048–3057; https://doi.org/10.1002/aic.15673.Search in Google Scholar
27. Jessop, P. G., Mercer, S. M., Heldebrant, D. J. CO2-triggered switchable solvents, surfactants, and other materials. Energy Environ. Sci. 2012, 6, 7240–7253; https://doi.org/10.1039/c2ee02912j.Search in Google Scholar
28. Iloukhani, H., Almasi, M. Densities and excess molar volumes of binary and ternary mixtures containing acetonitrile + acetophenone +1,2-pentanediol: experimental data, correlation and prediction by PFP theory and ERAS model. J. Solut. Chem. 2011, 40, 284–298; https://doi.org/10.1007/s10953-010-9637-3.Search in Google Scholar
29. Pal, A., Kumar, H., Oswal, S. L. Application of the extended real associated solution (ERAS) model to excess molar volumes of binary mixtures of (alkoxyethanols+1-alkanol). J. Mol. Liq. 2010, 156, 154–164; https://doi.org/10.1016/j.molliq.2010.07.004.Search in Google Scholar
30. Yang, C., Xu, W., Ma, P. Thermodynamic properties of binary mixtures of p-xylene with cyclohexane, heptane, octane, and N-Methyl-2-pyrrolidone at several temperatures. J. Chem. Eng. Data 2004, 49, 1794–1801; https://doi.org/10.1021/je049776w.Search in Google Scholar
31. Lee, M-J., Lin, T-K., Pai, Y-H., Lin, K-S. Density and viscosity for monoethanolamine + 1-propanol, + 1-hexanol, and + 1-octanol. J. Chem. Eng. Data 1997, 42, 854–857; https://doi.org/10.1021/je9700636.Search in Google Scholar
32. Yang, F., Wang, X., Wang, W., Liu, Z. Densities and excess properties of primary amines in alcoholic solutions. J. Chem. Eng. Data 2013, 58, 785–791; https://doi.org/10.1021/je3013205.Search in Google Scholar
33. Shirazi, S. G., Kermanpour, F. Thermodynamic study of binary mixture of 2-butanol + monoethanolamine at different temperatures; PC-SAFT and ERAS models. J. Mol. Liq. 2020, 320, 114461; https://doi.org/10.1016/j.molliq.2020.114461.Search in Google Scholar
34. Gowrisankar, M., Venkateswarlu, P., Sivakumar, K., Sivarambabu, S. Ultrasonic studies on molecular interactions in binary mixtures of N-methyl aniline with methyl isobutylketone, + 3-pentanone, and cycloalkanones at 303.15 K. J. Solut. Chem. 2013, 42, 916–935. https://doi.org/10.1007/s10953-013-0003-0.Search in Google Scholar PubMed PubMed Central
35. Eberhardt, E. S., Raines, R. T. Amide-amide and amide-water hydrogen bonds: implications for protein folding and stability. J. Am. Chem. Soc. 1994, 116, 2149–2150; https://doi.org/10.1021/ja00084a067.Search in Google Scholar PubMed PubMed Central
36. SavithaJyostna, T., Satheesh, B., Sreenu, D., Ramesh, G., Jayanthi Rani, E. The study of thermo-physical properties of binary liquid mixtures of isoamyl alcohol with amines at 298.15–308.15 K. Phys. Chem. Liq. 2020, 58, 349–363; https://doi.org/10.1080/00319104.2019.1594226.Search in Google Scholar
37. Manukonda, G., Ponneri, V., Kasibhatta, S., Sakamuri ivarambabu, S. Density, ultrasonic velocity, viscosity and their excess parameters of the binary mixtures of N,N- dimethylaniline+1-alkanols (C3-C5), +2- alkanols (C3-C4), +2-methyl-1-propanol, +2-methyl-2-propanol at 303.15 K. Kor. J. Chem. Eng. 2013, 30, 1131–1141; https://doi.org/10.1007/s11814-013-0014-y.Search in Google Scholar
38. Nain, A. K. Molecular interactions in binary mixtures of formamide with 1-butanol,2-butanol, 1,3-butanediol and 1,4-butanediol at different temperatures: an ultrasonic and viscometric study. Fluid Phase Equil. 2008, 265, 46–56; https://doi.org/10.1016/j.fluid.2007.12.007.Search in Google Scholar
39. Sarkar, L., Roy, M. N. Density, viscosity, refractive index, and ultrasonic speed of binary mixtures of 1,3-dioxolane with 2-methoxyethanol, 2- ethoxyethanol, 2-butoxyethanol, 2-propylamine, and cyclohexylamine. J. Chem. Eng. Data 2009, 54, 3307–3312; https://doi.org/10.1021/je900240s.Search in Google Scholar
40. Nikam, P. S., Mahale, T. R., Hasan, M. Density and viscosity of binary mixtures of ethyl acetate with methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol, 2-Methylpropan-1-ol, and 2-Methylpropan-2-ol at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 1996, 41, 1055–1058; https://doi.org/10.1021/je960090g.Search in Google Scholar
41. Wankhede, N. M., Lande, K., Arbad, B. R. Excess molar volumes and viscosity deviations of binary mixtures of 2,4,6-trimethyl-1,3,5- trioxane + ethanol, 1- propanol, and 1-butanol at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 2005, 50, 969–972; https://doi.org/10.1021/je049556i.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Physical Chemistry
- A methodology for measuring the characteristic curvature of technical-grade ethoxylated nonionic surfactants: the effects of concentration and dilution
- Study of molecular interactions of monoethanolamine with some higher alcohols at 298.15 K
- Applications
- Preparation of Pickering emulsion stabilized by lauroyl lysine
- Study of a high efficient composite foam drainage surfactant for gas production
- Body Care Products
- Formulation and evaluation of antidandruff shampoo using mannosylerythritol lipid (MEL) as a bio-surfactant
- Innovative Textile Finishing
- Effect of hydrophilic procedures on carboxyl content and antimicrobial activity of silver-treated nylon 6,6 fabrics
- Synthesis and dilute aqueous solution properties of cationic antistatic surfactant functionalized with hydroxyl and ether groups
- Novel Surfactants
- Production of high value-added filler from harmful dust of marble industry using N-sodium lauroyl sarcosinate surfactant as a new flotation collector
- Surface properties and coffee drop formation of natural surfactant: a case study of Albizia procera
Articles in the same Issue
- Frontmatter
- Physical Chemistry
- A methodology for measuring the characteristic curvature of technical-grade ethoxylated nonionic surfactants: the effects of concentration and dilution
- Study of molecular interactions of monoethanolamine with some higher alcohols at 298.15 K
- Applications
- Preparation of Pickering emulsion stabilized by lauroyl lysine
- Study of a high efficient composite foam drainage surfactant for gas production
- Body Care Products
- Formulation and evaluation of antidandruff shampoo using mannosylerythritol lipid (MEL) as a bio-surfactant
- Innovative Textile Finishing
- Effect of hydrophilic procedures on carboxyl content and antimicrobial activity of silver-treated nylon 6,6 fabrics
- Synthesis and dilute aqueous solution properties of cationic antistatic surfactant functionalized with hydroxyl and ether groups
- Novel Surfactants
- Production of high value-added filler from harmful dust of marble industry using N-sodium lauroyl sarcosinate surfactant as a new flotation collector
- Surface properties and coffee drop formation of natural surfactant: a case study of Albizia procera