Home Enhancing the Stability of Asphalt Emulsion Using Environmentally Friendly Cationically Modified Hydroxyethyl Cellulose (CMHEC) at Different Concentrations and pH Values
Article
Licensed
Unlicensed Requires Authentication

Enhancing the Stability of Asphalt Emulsion Using Environmentally Friendly Cationically Modified Hydroxyethyl Cellulose (CMHEC) at Different Concentrations and pH Values

  • Xiaoxi Wang

    Xiaoxi Wang and Runhan Hou: Most experiments, data treatment, writing-original draft preparation. Contribution equivalent.

    , Runhan Hou , Qian Zhang

    Qian Zhang: Helped to characterise the relating experiments.

    , Osama M. Darwesh

    Osama M. Darwesh: Supervision, writing and editing and submission.

    , Mengyao Gao

    Mengyao Gao and Zixu Zhang: Assisted in the preparation of the bitumen emulsions.

    , Zixu Zhang and Yuexin Wang

    Yuexin Wang: Supervision, writing and editing and submission.

    EMAIL logo
Published/Copyright: July 29, 2021
Become an author with De Gruyter Brill

Abstract

The cationically modified hydroxyethyl cellulose (CMHEC) was synthesized successfully and applied for preparing the cationic asphalt emulsion. The apparent viscosity and phase separation of the emulsion were studied at different CMHEC concentrations and pH values. The results indicated that the apparent viscosity of the emulsion was increased with increasing CMHEC concentration, and the phase separation was significantly reduced correspondingly. In addition, the effect of pH value on the emulsion quality was involved. The apparent viscosity of the emulsion showed the tendency to decrease firstly and then increase to the minimum value at pH 2. All results indicated that CMHEC has excellent potential in the manufacture of asphalt emulsion and the research of the pH effect on the formulation of asphalt emulsion has essential significance.

Zusammenfassung

Die kationisch modifizierte Hydroxyethylcellulose (CMHEC) wurde erfolgreich synthetisiert und zur Herstellung der kationischen Asphaltemulsion verwendet. Die scheinbare Viskosität und die Phasentrennung der Emulsion wurden bei verschiedenen CMHEC-Konzentrationen und pH-Werten untersucht. Die Ergebnisse zeigten, dass die scheinbare Viskosität der Emulsion mit zunehmender CMHEC-Konzentration anstieg und die Phasentrennung dementsprechend deutlich reduziert wurde. Außerdem wurde der Einfluss des pH-Wertes auf die Emulsionsqualität mit einbezogen. Die scheinbare Viskosität der Emulsion nahm zunächst ab und stieg dann bei pH 2 auf den Minimalwert an. Alle Ergebnisse wiesen darauf hin, dass CMHEC ein ausgezeichnetes Potenzial für die Herstellung von Asphaltemulsionen besitzt und die Erforschung des pH-Effekts von wesentlicher Bedeutung auf die Formulierung von Asphaltemulsionen ist.


Prof. Yuexin Wang Hebei University of Technology Guangrong Road No. 8 Hongqiao District Tianjin 300130 Tel.: 86-02260200436

About the authors

Xiaoxi Wang

Xiaoxi Wang and Runhan Hou: Most experiments, data treatment, writing-original draft preparation. Contribution equivalent.

Qian Zhang

Qian Zhang: Helped to characterise the relating experiments.

Osama M. Darwesh

Osama M. Darwesh: Supervision, writing and editing and submission.

Mengyao Gao

Mengyao Gao and Zixu Zhang: Assisted in the preparation of the bitumen emulsions.

Prof. Yuexin Wang

Yuexin Wang: Supervision, writing and editing and submission.

References

1 Cui, D. and Pang, J.: The Effect of pH on the properties of a cationic bitumen emulsifier, Tenside Surfactants Deterg. 54 (2017) 386–392. DOI:10.3139/113.11052010.3139/113.110520Search in Google Scholar

2 Iwański, M., Chomicz-Kowalska, A. and Maciejewski, K.: Application of synthetic wax for improvement of foamed bitumen parameters, Constr. Build. Mater. 83 (2015) 62–69. DOI:10.1016/j.conbuildmat.2015.02.06010.1016/j.conbuildmat.2015.02.060Search in Google Scholar

3 Khan, A., Redelius, P. and Kringos, N.: Physicochemical and engineering aspects toward a new experimental method for measuring coalescence in bitumen emulsions: A study of two bitumen droplets, Colloids Surfaces A Physicochem. Eng. Asp. 494 (2016) 228–240. DOI:10.1016/j.colsurfa.2016.01.04510.1016/j.colsurfa.2016.01.045Search in Google Scholar

4 Querol, N., Barreneche, C. and Cabeza, L. F. : Method for controlling mean droplet size in the manufacture of phase inversion bituminous emulsions, Colloids Surfaces A Physicochem. Eng. Asp. 527 (2017) 49–54. DOI:10.1016/j.colsurfa.2017.05.01810.1016/j.colsurfa.2017.05.018Search in Google Scholar

5 Meng, Y., Lu, J., Cheng, Y., Li, Q. and Wang, H.: Lignin-based hydrogels: A review of preparation, properties, and application. Int. J. Biol. Macromol. 135 (2019) 1006–1019. PMid:31154040; DOI:10.1016/j.ijbiomac.2019.05.19810.1016/j.ijbiomac.2019.05.198Search in Google Scholar PubMed

6 Darwesh, O. M., Sultan, Y. Y., Seif, M. M. and Marrez, D. A.: Bio-evaluation of crustacean and fungal nano-chitosan for applying as food ingredient, Toxicol. Reports. 5 (2018) 348–356. PMid:29854604; DOI:10.1016/j.toxrep.2018.03.00210.1016/j.toxrep.2018.03.002Search in Google Scholar PubMed PubMed Central

7 Hasanin, M. S., Darwesh, O. M., Matter, I. A. and El-Saied, H.: Isolation and characterization of non-cellulolytic Aspergillus flavus EGYPTA5 exhibiting selective ligninolytic potential, Biocatal. Agric. Biotechnol. 17 (2019) 160–167. DOI:10.1016/j.bcab.2018.11.01210.1016/j.bcab.2018.11.012Search in Google Scholar

8 Dammak, I. and Sobral, P. J.: Effect of different biopolymers on the stability of hesperidin-encapsulating O/W emulsions, J. Food Eng. 237 (2018) 33–43. DOI:10.1016/j.jfoodeng.2018.05.00410.1016/j.jfoodeng.2018.05.004Search in Google Scholar

9 Huang, X., Li, Q., Liu, H., Shang, S., Shen, M. and Song, J.: Oil-in-water emulsions stabilized by saponified epoxidized soybean oil-grafted hydroxyethyl cellulose, J. Agric. Food Chem. 65 (2017) 3497–3504. PMid:28418657; DOI:10.1021/acs.jafc.7b0066210.1021/acs.jafc.7b00662Search in Google Scholar PubMed

10 Darwesh, O. M., El-Maraghy, S. H., Abdel-Rahman, H. M. and Zaghloul, R. A.: Improvement of paper wastes conversion to bioethanol using novel cellulose degrading fungal isolate, Fuel. 262 (2020) 116518. DOI:10.1016/j.fuel.2019.11651810.1016/j.fuel.2019.116518Search in Google Scholar

11 Youssef, A. M., Hasanin, M. S., Abd El-Aziz, M. E. and Darwesh, O. M.: Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers, Heliyon. 5 (2019) e01332. PMid:30923764; DOI:10.1016/j.heliyon.2019.e0133210.1016/j.heliyon.2019.e01332Search in Google Scholar PubMed PubMed Central

12 Hasanin, M. S., Mostafa, A. M., Mwafy, E. A. and Darwesh, O. M.: Eco-friendly cellulose nano fibers via first reported egyptian humicola fuscoatra egyptia X4: Isolation and characterization, Environ. Nanotechnology, Monit. Manag. 10 (2018) 409–418. DOI:10.1016/j.enmm.2018.10.00410.1016/j.enmm.2018.10.004Search in Google Scholar

13 Medronho, B., Filipe, A., Costa, C., Romano, A., Lindman, B., Edlund, H. and Norgren, M.: Microrheology of novel cellulose stabilized oil-in-water emulsions, J. Colloid Interface Sci. 531 (2018) 225–232. PMid:30032009; DOI:10.1016/j.jcis.2018.07.04310.1016/j.jcis.2018.07.043Search in Google Scholar PubMed

14 Raffa, P., Wever, D. A. Z., Picchioni, F. and Broekhuis, A. A.: Polymeric surfactants: Synthesis, properties, and links to applications, Chem. Rev. 115 (2015) 8504–8563. PMid:26182291; DOI:10.1021/cr500129 h10.1021/cr500129hSearch in Google Scholar PubMed

15 Sun, W., Sun, D., Wei, Y., Liu, S. and Zhang, S.: Oil-in-water emulsions stabilized by hydrophobically modified hydroxyethyl cellulose: Adsorption and thickening effect, J. Colloid Interface Sci. 311 (2007) 228–236. PMid:17379236; DOI:10.1016/j.jcis.2007.02.08210.1016/j.jcis.2007.02.082Search in Google Scholar PubMed

16 Liang, Y., Wong, S., Pham, S. Q. and Tan, J. J.: Food hydrocolloids effects of globular protein type and concentration on the physical properties and flow behaviors of oil-in-water emulsions stabilized by micellar casein-globular protein mixtures, Food Hydrocoll. 54 (2016) 89–98. DOI:10.1016/j.foodhyd.2015.09.02410.1016/j.foodhyd.2015.09.024Search in Google Scholar

17 Zhao, Y., Zhou, J., Xu, X., Liu, W., Zhang, J., Fan, M. and Wang, J.: Synthesis and characterization of a series of modified polyacrylamide, Coll. Pol. Sci. 287 (2009) 237–241. DOI:10.1007/s00396-008-1975-y10.1007/s00396-008-1975-ySearch in Google Scholar

18 Bai, Y., Shang, X., Wang, Z. and Zhao, X.: Experimental Study on hydrophobically associating hydroxyethyl cellulose flooding system for enhanced oil recovery, Energy and Fuels. 32 (2018) 6713–6725. DOI:10.1021/acs.energyfuels.8b0113810.1021/acs.energyfuels.8b01138Search in Google Scholar

19 Wang, X., Wu, M., Zhang, B., Zhang, Y., Hu, C., Shi, L., Lv, Y. and Ran, R.: Phase-transfer method synthesis hydroxyethyl cellulose lauryl ether, Colloids Surfaces A Physicochem. Eng. Asp. 562 (2019) 383–391. DOI:10.1016/j.colsurfa.2018.11.05510.1016/j.colsurfa.2018.11.055Search in Google Scholar

20 Kalliola, S., Repo, E., Srivastava, V., Zhao, F., Juha, P. H., Juho, A. S., Henrikki, L. and Mika, S.: Carboxymethyl chitosan and its hydrophobically modified derivative as pH-switchable emulsifiers, Langmuir. 34 (2018) 2800–2806. PMid:29406746; DOI:10.1021/acs.langmuir.7b0395910.1021/acs.langmuir.7b03959Search in Google Scholar PubMed PubMed Central

21 Alison, L., Demiro?rs, A. F., Tervoort, E., Teleki, A., Vermant, J. and Studart, A. R.: Emulsions Stabilized by Chitosan-Modified Silica Nanoparticles: pH Control of Structure–Property Relations, Langmuir 34 (2018) 6147–6160. PMid:29719151; DOI:10.1021/acs.langmuir.8b0062210.1021/acs.langmuir.8b00622Search in Google Scholar PubMed

22 Mourad, R., Helaly, F., Darwesh, O. and El Sawy, S.: Antimicrobial and physicomechanical natures of silver nanoparticles incorporated into silicone-hydrogel films, Contact Lens Anterior Eye. 42 (2019) 325–333. PMid:30827719; DOI:10.1016/j.clae.2019.02.00710.1016/j.clae.2019.02.007Search in Google Scholar PubMed

23 Abdelhameed, R. M., Darwesh, O. M., Rocha, J. and Silva, A. M. S.: IRMOF-3 biological activity enhancement by post-synthetic modification, Eur. J. Inorg. Chem. 2019 (2019) 1243–1249. DOI:10.1002/ejic.20180144210.1002/ejic.201801442Search in Google Scholar

24 Eida, M. F., Darwesh, O. M. and Matter, I. A.: Cultivation of oleaginous microalgae Scenedesmus obliquus on secondary treated municipal wastewater as growth medium for biodiesel production, J. Ecol. Eng. 19 (2018) 38–51. DOI:10.12911/22998993/9127410.12911/22998993/91274Search in Google Scholar

25 Jia, H., Lian, P., Leng, X., Han, Y., Wang, Q., Jia, K., Niu, X., Guo, M., Yan, H. and Lv, K.: Mechanism studies on the application of the mixed cationic/anionic surfactant systems to enhance oil recovery, Fuel. 258 (2019): 116156. DOI:10.1016/j.fuel.2019.11615610.1016/j.fuel.2019.116156Search in Google Scholar

26 Hu, J., Huang, C., Gong, A., Chen, H., Liu, S., Li, B. and Li, Y.: Influence of pH on property and lipolysis behavior of cinnamaldehyde conjugated chitosan-stabilized emulsions, Int. J. Biol. Macromol. 161 (2020) 587–595. PMid:32534092; DOI:10.1016/j.ijbiomac.2020.06.07310.1016/j.ijbiomac.2020.06.073Search in Google Scholar PubMed

27 Bai, Y., Shang, X., Wang, Z. and Zhao, X.: Experimental study on hydrophobically associating hydroxyethyl cellulose flooding system for enhanced oil recovery, Energy & Fuels. 32 (2018): 6713–6725. DOI:10.1021/acs.energyfuels.8b0113810.1021/acs.energyfuels.8b01138Search in Google Scholar

28 Hou, R., Wang, X., Zhang, Q., Han, Y., Zhang, T. and Wang Y.: Modified Chitosan as a \Multi-Subtype" Macromolecular Emulsifier for Preparing Asphalt Emulsion, ChemistrySelect. 4 (2019): 9802–9806. DOI:10.1002/slct.20190173910.1002/slct.201901739Search in Google Scholar

29 Querol, N., Barreneche, C. and Cabeza, L. F.: Asphalt emulsion formulation: State of the art of formulation, properties and results of HIPR emulsions, Constr. Build. Mater. 212 (2019) 19–26. DOI:10.1016/j.conbuildmat.2019.03.30110.1016/j.conbuildmat.2019.03.301Search in Google Scholar

30 Bu, X., Wang, X., Dai, L., Ji, N., Xiong, L. and Sun, Q.: The combination of starch nanoparticles and Tween 80 results in enhanced emulsion stability, Int. J. Biol. Macromol. 163(2020)2048–2059. PMid:32961176; DOI:10.1016/j.ijbiomac.2020.09.11110.1016/j.ijbiomac.2020.09.111Search in Google Scholar PubMed

Received: 2020-12-16
Accepted: 2021-02-02
Published Online: 2021-07-29
Published in Print: 2021-07-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/tsd-2020-2338/html
Scroll to top button